Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Membrane molecule keeps nerve impulses hopping

27.01.2011
New research from the University of North Carolina at Chapel Hill School of Medicine describes a key molecular mechanism in nerve fibers that ensures the rapid conductance of nervous system impulses.

Our hard-wired nerve fibers or axons rely on an insulating membrane sheath, the myelin, made up of fatty white matter to accelerate the rate of transmission of electrical impulses from the brain to other parts of the body.

Myelin thus acts to prevent electrical current from leaking or prematurely leaving the axon. However, the myelin surrounding the axon isn’t continuous; there are regularly spaced unmyelinated gaps about 1 micrometer wide along the axon. These unmyelinated regions named as nodes of Ranvier are where electrical impulses hop from one node to the next along the axon, at rates as fast as 160 meters per second (360 mph).

Determining exactly how the nodes of Ranvier function and how they are assembled, has fired the interest of neuroscientists for more than a century,” said UNC neuroscientist Manzoor Bhat, PhD, Professor of Cell and Molecular Physiology in the UNC Neuroscience Research Center. “The answers may also provide important clues to the development of targeted treatments for multiple sclerosis and other disorders involving demyelination and/or disorganization of nodes of Ranvier.”

Bhat and colleagues focused on a protein called Neurofascin 186, which accumulates in the membranes of axons at the nodes of Ranvier. Together with proteins Ankyrin-G and sodium channels, these molecules form a complex that facilitates passage of sodium ions through the channels in axons, thus making them paramount for the propagation of nerve impulses along myelinated nerve fibers.

Bhat’s team had previously identified a homolog of Neurofascin in laboratory studies of Drosophila nerve fibers, and because its in vivo function had not been clearly defined in a mammalian system, they decided to study the function of this protein in laboratory mice.

Using targeted gene deletion methods, the UNC scientists genetically engineered mice lacking Neurofascin 186 in their neurons. “This caused the failure of sodium channels and Ankyrin-G to accumulate at the nodes of Ranvier. The result was paralysis, as there was no nerve impulse conductance,” Bhat said.

According to Bhat, Neurofascin is an adhesion molecule that serves as the nodal organizer. “Its job is to cluster at the nodes of Ranvier. In doing so, it brings together sodium channels and Ankyrin-G where they interact to form the nodal complex. And if you don’t have this protein, the node is compromised and there is no impulse propagation along the axon.”

In further analysis, the researchers identified another important function of the nodes of Ranvier in myelinated nerve cells: to act as barriers to prevent the invasion of the nodal gap by neighboring paranodal molecular complexes. “So this tells us that sodium channels, Neurofascin 186, and Ankyrin-G must always remain in the node to have functional organization. If they don’t, the flanking paranodes will move in and occupy the nodal gap and block nerve conduction,” Bhat said.

The UNC neuroscientists see clinical implications for human disease. “In MS, for example, the proteins that make up the nodal complex start diffusing out from their normal location once you start losing the myelin sheath. If we can restore the nodal complex in nerve fibers, we may be able to restore some nerve conduction and function in affected axons.” Their future studies are aimed at understanding whether the nodal complex could be reorganized and nerve conduction restored in genetically modified mutant mice.

“The discovery of an essential gap protein is exciting because it opens up the possibility that tweaking the protein could restore normal gap function in people with multiple sclerosis and other diseases in which the myelin sheaths and gaps deteriorate over time,” said Laurie Tompkins, PhD, who oversees Manzoor Bhat’s and other neurogenetics grants at the National Institutes of Health.

Support for the research came from the National Institute of General Medical Sciences, the National Institute of Neurological Disorders & Stroke of the National Institutes of Health and the National Multiple Sclerosis Society.

UNC co-authors are postdoctoral fellow Courtney Thaxton, PhD; research specialist, Anilkumar Pillai; and graduate student, Alaine Pribisco. Dr. Jeffrey Dupree, assistant professor at Virginia Commonwealth University, collaborated in these studies.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>