Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melting DNA into a barcode

19.07.2010
A completely new method for producing an image of individual DNA molecules’ genetic make-up has been developed by researchers in Sweden and Denmark. The results are published in the latest issue of the journal Proceedings of the National Academy of Sciences of the USA (PNAS).

“The technique is quicker, easier and cheaper than existing methods. Therefore we hope that it can be used in hospitals in the future. Mapping a person’s genome, or genetic make-up, is currently an expensive and complicated process”, explains Jonas Tegenfeldt, researcher in Solid State Physics at Lund University and one of the senior authors of the article.

According to the researchers, the technique could be used to find out more easily whether someone is carrying a genetic predisposition to certain diseases.

The hope is that it could be used to diagnose and characterise diseases that are caused by significant changes and mutations in the genetic make-up, known as structural variations, that are associated with, for example, cancer, autism and several hereditary diseases. In addition, the method could be of use in criminal investigations, because it might speed up identification of evidence.

The technique, which has recently been patented, utilises the fact that different parts of the DNA molecule melt at different temperatures. A central component of the DNA molecule is the nucleobase pairs. These are found in two pair varieties; AT, which stands for adenine and thymine, and GC, which stands for guanine and cytosine. The GC pair is more firmly bound and requires a higher temperature to melt.

By first stretching out the tightly twisted DNA molecule in a nanochannel and then heating it up so that only the AT pair melt, it is possible to obtain a ‘barcode’ of the person’s 46 chromosomes. In order to make certain parts darker than others, the DNA molecule must be stained. The parts that melt – the AT parts – emit less fluorescence and become dark fields in the barcode.

The image produced shows the rough composition of the DNA molecule, and thus that of the chromosome. Such ‘barcodes’ are nothing new, but this approach to creating the barcodes is completely new. With this method, the DNA analysis process becomes significantly shorter, from 24 hours to around one or two hours.

“The barcode technique could be a simple way to identify what types of virus and bacteria we are dealing with. We can also find out whether something has gone wrong in the human genome, because it is possible to see if any part of the chromosome has moved for any reason. This is what happens in certain diseases”, explains Jonas Tegenfeldt, adding that beyond all the applications an important motivation for the research is still ‘just’ basic scientific curiosity.

A further advantage of this barcode technique over other techniques is that only one DNA molecule is required. The fact that the DNA does not have to be amplified also means that it is easy to compare a number of cells and thereby discover any differences between them.

The method provides a rough image of the genome, but compared to other similar methods, such as chromosome banding, the image is still a thousand times sharper. The fact that the measurements must be performed on each molecule individually could also pose a limitation; it is not easy to obtain an average from a large number of molecules.

For more information, please contact Jonas Tegenfeldt, researcher at the Division of Solid State Physics at the Faculty of Engineering, Lund University, +46 (0)46 222 8063 or jonas.tegenfeldt@ftf.lth.se.

Ingemar Björklund | idw
Further information:
http://www.vr.se
http://www.pnas.org/cgi/doi/10.1073/pnas.1007081107

Further reports about: Barcode Chromosome DNA DNA molecule Melting rock genetic make-up nucleobase pairs thymine

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>