Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melting DNA into a barcode

19.07.2010
A completely new method for producing an image of individual DNA molecules’ genetic make-up has been developed by researchers in Sweden and Denmark. The results are published in the latest issue of the journal Proceedings of the National Academy of Sciences of the USA (PNAS).

“The technique is quicker, easier and cheaper than existing methods. Therefore we hope that it can be used in hospitals in the future. Mapping a person’s genome, or genetic make-up, is currently an expensive and complicated process”, explains Jonas Tegenfeldt, researcher in Solid State Physics at Lund University and one of the senior authors of the article.

According to the researchers, the technique could be used to find out more easily whether someone is carrying a genetic predisposition to certain diseases.

The hope is that it could be used to diagnose and characterise diseases that are caused by significant changes and mutations in the genetic make-up, known as structural variations, that are associated with, for example, cancer, autism and several hereditary diseases. In addition, the method could be of use in criminal investigations, because it might speed up identification of evidence.

The technique, which has recently been patented, utilises the fact that different parts of the DNA molecule melt at different temperatures. A central component of the DNA molecule is the nucleobase pairs. These are found in two pair varieties; AT, which stands for adenine and thymine, and GC, which stands for guanine and cytosine. The GC pair is more firmly bound and requires a higher temperature to melt.

By first stretching out the tightly twisted DNA molecule in a nanochannel and then heating it up so that only the AT pair melt, it is possible to obtain a ‘barcode’ of the person’s 46 chromosomes. In order to make certain parts darker than others, the DNA molecule must be stained. The parts that melt – the AT parts – emit less fluorescence and become dark fields in the barcode.

The image produced shows the rough composition of the DNA molecule, and thus that of the chromosome. Such ‘barcodes’ are nothing new, but this approach to creating the barcodes is completely new. With this method, the DNA analysis process becomes significantly shorter, from 24 hours to around one or two hours.

“The barcode technique could be a simple way to identify what types of virus and bacteria we are dealing with. We can also find out whether something has gone wrong in the human genome, because it is possible to see if any part of the chromosome has moved for any reason. This is what happens in certain diseases”, explains Jonas Tegenfeldt, adding that beyond all the applications an important motivation for the research is still ‘just’ basic scientific curiosity.

A further advantage of this barcode technique over other techniques is that only one DNA molecule is required. The fact that the DNA does not have to be amplified also means that it is easy to compare a number of cells and thereby discover any differences between them.

The method provides a rough image of the genome, but compared to other similar methods, such as chromosome banding, the image is still a thousand times sharper. The fact that the measurements must be performed on each molecule individually could also pose a limitation; it is not easy to obtain an average from a large number of molecules.

For more information, please contact Jonas Tegenfeldt, researcher at the Division of Solid State Physics at the Faculty of Engineering, Lund University, +46 (0)46 222 8063 or jonas.tegenfeldt@ftf.lth.se.

Ingemar Björklund | idw
Further information:
http://www.vr.se
http://www.pnas.org/cgi/doi/10.1073/pnas.1007081107

Further reports about: Barcode Chromosome DNA DNA molecule Melting rock genetic make-up nucleobase pairs thymine

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>