Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melting DNA into a barcode

19.07.2010
A completely new method for producing an image of individual DNA molecules’ genetic make-up has been developed by researchers in Sweden and Denmark. The results are published in the latest issue of the journal Proceedings of the National Academy of Sciences of the USA (PNAS).

“The technique is quicker, easier and cheaper than existing methods. Therefore we hope that it can be used in hospitals in the future. Mapping a person’s genome, or genetic make-up, is currently an expensive and complicated process”, explains Jonas Tegenfeldt, researcher in Solid State Physics at Lund University and one of the senior authors of the article.

According to the researchers, the technique could be used to find out more easily whether someone is carrying a genetic predisposition to certain diseases.

The hope is that it could be used to diagnose and characterise diseases that are caused by significant changes and mutations in the genetic make-up, known as structural variations, that are associated with, for example, cancer, autism and several hereditary diseases. In addition, the method could be of use in criminal investigations, because it might speed up identification of evidence.

The technique, which has recently been patented, utilises the fact that different parts of the DNA molecule melt at different temperatures. A central component of the DNA molecule is the nucleobase pairs. These are found in two pair varieties; AT, which stands for adenine and thymine, and GC, which stands for guanine and cytosine. The GC pair is more firmly bound and requires a higher temperature to melt.

By first stretching out the tightly twisted DNA molecule in a nanochannel and then heating it up so that only the AT pair melt, it is possible to obtain a ‘barcode’ of the person’s 46 chromosomes. In order to make certain parts darker than others, the DNA molecule must be stained. The parts that melt – the AT parts – emit less fluorescence and become dark fields in the barcode.

The image produced shows the rough composition of the DNA molecule, and thus that of the chromosome. Such ‘barcodes’ are nothing new, but this approach to creating the barcodes is completely new. With this method, the DNA analysis process becomes significantly shorter, from 24 hours to around one or two hours.

“The barcode technique could be a simple way to identify what types of virus and bacteria we are dealing with. We can also find out whether something has gone wrong in the human genome, because it is possible to see if any part of the chromosome has moved for any reason. This is what happens in certain diseases”, explains Jonas Tegenfeldt, adding that beyond all the applications an important motivation for the research is still ‘just’ basic scientific curiosity.

A further advantage of this barcode technique over other techniques is that only one DNA molecule is required. The fact that the DNA does not have to be amplified also means that it is easy to compare a number of cells and thereby discover any differences between them.

The method provides a rough image of the genome, but compared to other similar methods, such as chromosome banding, the image is still a thousand times sharper. The fact that the measurements must be performed on each molecule individually could also pose a limitation; it is not easy to obtain an average from a large number of molecules.

For more information, please contact Jonas Tegenfeldt, researcher at the Division of Solid State Physics at the Faculty of Engineering, Lund University, +46 (0)46 222 8063 or jonas.tegenfeldt@ftf.lth.se.

Ingemar Björklund | idw
Further information:
http://www.vr.se
http://www.pnas.org/cgi/doi/10.1073/pnas.1007081107

Further reports about: Barcode Chromosome DNA DNA molecule Melting rock genetic make-up nucleobase pairs thymine

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>