Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More than meets the eye

25.05.2012
‘Transformer’ protein makes different sized transport pods

These spheres may look almost identical, but subtle differences between them revealed a molecular version of the robots from Transformers. Each sphere is a vesicle, a pod that cells use to transport materials between different compartments.


Image credit: EMBL/M.Faini

The images, produced by Marco Faini from John Briggs’ lab at the European Molecular Biology Laboratory (EMBL), in Heidelberg, Germany, are the first high-resolution view of the 3-dimensional structure of such a pod. They show a particular type of vesicle that is encased by a protein called COPI, and whose structure had never been seen before.

Several copies of the COPI protein attach to each other to form a coat around the vesicle’s membrane. Briggs and colleagues were surprised to find that the COPI building blocks are capable of a ‘transformer’ act: they can change shape to connect to more or fewer copies of themselves. So by changing the shape of individual COPI blocks, the cell could create vesicles of different shapes and sizes, for instance to transport different kinds of cargo.

Previously, scientists had been able to create and determine the structure of ‘cages’ formed by parts of the protein coats that encase other types of vesicles, but this study, published online today in Science, was the first to obtain high-resolution images of complete vesicles, budded from a membrane.

The work was carried out in collaboration with the lab of Felix Wieland at Heidelberg University in Germany.

Published online in Science on 24 May 2012: www.sciencemag.org/content/early/2012/05/23/science.1221443

Policy regarding use
EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>