Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meet Plants' and Algae's Common Ancestor

21.02.2012
Primitive organisms not always so simple, researcher says.

A University of Arkansas biologist has created a sketch of what the first common ancestor of plants and algae may have looked like. The image appears as part of a “Perspective” article in the Feb. 17 issue of Science. The image is based on a research paper that is also published in this issue of Science.

Fred Spiegel, professor of biological sciences in the J. William Fulbright College of Arts and Sciences, suggests what microscopic parts would have been present in this common ancestor based on findings by Dana Price of Rutgers University and his colleagues, who examined the genome of a freshwater microscopic algae and determined that it showed that algae and plants are derived from one common ancestor. This ancestor formed from a merger between some protozoan-like host and cyanobacterium, a kind of bacteria that use photosynthesis to make energy, that “moved in” and became the chloroplast of this first alga. Price and his colleagues show that today’s algae and plants have to be descended from this first alga, but they give no idea what it looked like.

“The work that Price and his group did nailed down what the relationships are” between this organism, the algae and plants, and all other eukaryotes, organisms that have a true nucleus in their cells, Spiegel said. “Once you know that, you can compare the structure of cells and characteristics you see in algae and plants with other eukaryotes and get a reasonable idea of what the original critter must have looked like.”

For many years, scientists have speculated that the original ancestor of plants and algae must have originated from a protozoan-like organism and cyanobacteria. They theorized that at some point in the distant past the cyanobacteria became part of the other organism and created the first alga, which in turn created the opportunity for the growth into the biodiversity found in plants that we see today.

However, other scientists argued that the diversity and complexity of plants and algae suggest multiple events where different organisms merged. They pointed out that some members of the plant kingdom have simple structures and therefore must be more primitive than others.

Price and his colleagues’ studied the genome of an obscure alga called Cyanophora. Their results strongly suggest that the first alga arose about a billion to a billion and a half years ago. This alga became the ancestor to the group of algae containing Cyanophora, plus the group of algae that includes the red seaweeds, plus the group that includes the green algae and the land plants. Together, these organisms form the super group called Plantae.

Based on this research, Spiegel has put forth a hypothetical snapshot of what the common ancestor of Plantae, the “first alga,” might have looked like.

“The common ancestor of Plantae was an organism with very complex cells and a complex life cycle,” Spiegel said. While some members of the super group Plantae may have less complex cells and life cycles, this does not mean they pre-date the common ancestor. “They’re simpler because they lost parts, not because they originated that way.”

Steve Voorhies
Manager of media relations
University Relations
University of Arkansas
575-3583
871-3474(cell)

Steve Voorhies | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>