Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meet Plants' and Algae's Common Ancestor

21.02.2012
Primitive organisms not always so simple, researcher says.

A University of Arkansas biologist has created a sketch of what the first common ancestor of plants and algae may have looked like. The image appears as part of a “Perspective” article in the Feb. 17 issue of Science. The image is based on a research paper that is also published in this issue of Science.

Fred Spiegel, professor of biological sciences in the J. William Fulbright College of Arts and Sciences, suggests what microscopic parts would have been present in this common ancestor based on findings by Dana Price of Rutgers University and his colleagues, who examined the genome of a freshwater microscopic algae and determined that it showed that algae and plants are derived from one common ancestor. This ancestor formed from a merger between some protozoan-like host and cyanobacterium, a kind of bacteria that use photosynthesis to make energy, that “moved in” and became the chloroplast of this first alga. Price and his colleagues show that today’s algae and plants have to be descended from this first alga, but they give no idea what it looked like.

“The work that Price and his group did nailed down what the relationships are” between this organism, the algae and plants, and all other eukaryotes, organisms that have a true nucleus in their cells, Spiegel said. “Once you know that, you can compare the structure of cells and characteristics you see in algae and plants with other eukaryotes and get a reasonable idea of what the original critter must have looked like.”

For many years, scientists have speculated that the original ancestor of plants and algae must have originated from a protozoan-like organism and cyanobacteria. They theorized that at some point in the distant past the cyanobacteria became part of the other organism and created the first alga, which in turn created the opportunity for the growth into the biodiversity found in plants that we see today.

However, other scientists argued that the diversity and complexity of plants and algae suggest multiple events where different organisms merged. They pointed out that some members of the plant kingdom have simple structures and therefore must be more primitive than others.

Price and his colleagues’ studied the genome of an obscure alga called Cyanophora. Their results strongly suggest that the first alga arose about a billion to a billion and a half years ago. This alga became the ancestor to the group of algae containing Cyanophora, plus the group of algae that includes the red seaweeds, plus the group that includes the green algae and the land plants. Together, these organisms form the super group called Plantae.

Based on this research, Spiegel has put forth a hypothetical snapshot of what the common ancestor of Plantae, the “first alga,” might have looked like.

“The common ancestor of Plantae was an organism with very complex cells and a complex life cycle,” Spiegel said. While some members of the super group Plantae may have less complex cells and life cycles, this does not mean they pre-date the common ancestor. “They’re simpler because they lost parts, not because they originated that way.”

Steve Voorhies
Manager of media relations
University Relations
University of Arkansas
575-3583
871-3474(cell)

Steve Voorhies | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>