Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meet Plants' and Algae's Common Ancestor

21.02.2012
Primitive organisms not always so simple, researcher says.

A University of Arkansas biologist has created a sketch of what the first common ancestor of plants and algae may have looked like. The image appears as part of a “Perspective” article in the Feb. 17 issue of Science. The image is based on a research paper that is also published in this issue of Science.

Fred Spiegel, professor of biological sciences in the J. William Fulbright College of Arts and Sciences, suggests what microscopic parts would have been present in this common ancestor based on findings by Dana Price of Rutgers University and his colleagues, who examined the genome of a freshwater microscopic algae and determined that it showed that algae and plants are derived from one common ancestor. This ancestor formed from a merger between some protozoan-like host and cyanobacterium, a kind of bacteria that use photosynthesis to make energy, that “moved in” and became the chloroplast of this first alga. Price and his colleagues show that today’s algae and plants have to be descended from this first alga, but they give no idea what it looked like.

“The work that Price and his group did nailed down what the relationships are” between this organism, the algae and plants, and all other eukaryotes, organisms that have a true nucleus in their cells, Spiegel said. “Once you know that, you can compare the structure of cells and characteristics you see in algae and plants with other eukaryotes and get a reasonable idea of what the original critter must have looked like.”

For many years, scientists have speculated that the original ancestor of plants and algae must have originated from a protozoan-like organism and cyanobacteria. They theorized that at some point in the distant past the cyanobacteria became part of the other organism and created the first alga, which in turn created the opportunity for the growth into the biodiversity found in plants that we see today.

However, other scientists argued that the diversity and complexity of plants and algae suggest multiple events where different organisms merged. They pointed out that some members of the plant kingdom have simple structures and therefore must be more primitive than others.

Price and his colleagues’ studied the genome of an obscure alga called Cyanophora. Their results strongly suggest that the first alga arose about a billion to a billion and a half years ago. This alga became the ancestor to the group of algae containing Cyanophora, plus the group of algae that includes the red seaweeds, plus the group that includes the green algae and the land plants. Together, these organisms form the super group called Plantae.

Based on this research, Spiegel has put forth a hypothetical snapshot of what the common ancestor of Plantae, the “first alga,” might have looked like.

“The common ancestor of Plantae was an organism with very complex cells and a complex life cycle,” Spiegel said. While some members of the super group Plantae may have less complex cells and life cycles, this does not mean they pre-date the common ancestor. “They’re simpler because they lost parts, not because they originated that way.”

Steve Voorhies
Manager of media relations
University Relations
University of Arkansas
575-3583
871-3474(cell)

Steve Voorhies | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>