Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meet Plants' and Algae's Common Ancestor

21.02.2012
Primitive organisms not always so simple, researcher says.

A University of Arkansas biologist has created a sketch of what the first common ancestor of plants and algae may have looked like. The image appears as part of a “Perspective” article in the Feb. 17 issue of Science. The image is based on a research paper that is also published in this issue of Science.

Fred Spiegel, professor of biological sciences in the J. William Fulbright College of Arts and Sciences, suggests what microscopic parts would have been present in this common ancestor based on findings by Dana Price of Rutgers University and his colleagues, who examined the genome of a freshwater microscopic algae and determined that it showed that algae and plants are derived from one common ancestor. This ancestor formed from a merger between some protozoan-like host and cyanobacterium, a kind of bacteria that use photosynthesis to make energy, that “moved in” and became the chloroplast of this first alga. Price and his colleagues show that today’s algae and plants have to be descended from this first alga, but they give no idea what it looked like.

“The work that Price and his group did nailed down what the relationships are” between this organism, the algae and plants, and all other eukaryotes, organisms that have a true nucleus in their cells, Spiegel said. “Once you know that, you can compare the structure of cells and characteristics you see in algae and plants with other eukaryotes and get a reasonable idea of what the original critter must have looked like.”

For many years, scientists have speculated that the original ancestor of plants and algae must have originated from a protozoan-like organism and cyanobacteria. They theorized that at some point in the distant past the cyanobacteria became part of the other organism and created the first alga, which in turn created the opportunity for the growth into the biodiversity found in plants that we see today.

However, other scientists argued that the diversity and complexity of plants and algae suggest multiple events where different organisms merged. They pointed out that some members of the plant kingdom have simple structures and therefore must be more primitive than others.

Price and his colleagues’ studied the genome of an obscure alga called Cyanophora. Their results strongly suggest that the first alga arose about a billion to a billion and a half years ago. This alga became the ancestor to the group of algae containing Cyanophora, plus the group of algae that includes the red seaweeds, plus the group that includes the green algae and the land plants. Together, these organisms form the super group called Plantae.

Based on this research, Spiegel has put forth a hypothetical snapshot of what the common ancestor of Plantae, the “first alga,” might have looked like.

“The common ancestor of Plantae was an organism with very complex cells and a complex life cycle,” Spiegel said. While some members of the super group Plantae may have less complex cells and life cycles, this does not mean they pre-date the common ancestor. “They’re simpler because they lost parts, not because they originated that way.”

Steve Voorhies
Manager of media relations
University Relations
University of Arkansas
575-3583
871-3474(cell)

Steve Voorhies | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>