Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism for invasion of tumorous cells discovered ...

11.04.2011
... by Hebrew University researchers opens door for possible early detection, treatment of cancer

Researchers at the Hebrew University of Jerusalem have discovered a previously unknown mechanism whereby tumor cells invade normal tissues, spreading cancer through various organs.

The ability of tumor cells to invade adjacent structures is a prerequisite for metastasis and distinguishes malignant tumors from benign ones. Thus, understanding the mechanisms that drive malignant cells to invade and a possible avenue for halting that mechanism could have tremendous potential for enhancing early detection of malignant cells and for therapeutic treatment.

It has previously been assumed that tumor cells turn invasive upon accumulation of multiple mutations, each giving the cancer cell some invasive properties

Now, Prof. Yinon Ben-Neriah and Dr. Eli Pikarsky of the Institute for Medical Research Israel-Canada at the Hebrew University Faculty of Medicine and their colleagues are reporting an alternative mechanism through which tumor cells become invasive. They found a program that is operated by a concerted group of genes that, when activated together, confer invasive properties upon epithelial cells. (Epithelial tissues line the cavities and surfaces of structures throughout the body, and also form many glands.) An article reporting their work appeared in a recent issue of the journal Nature.

Interestingly, the expression of this entire gene group is normally suppressed by a single gene – p53 – that is considered as the most important tumor suppressor but unfortunately is inactivated in the majority of human cancers. Some key properties of the protein produced by the p53 gene -- arresting cell growth and induction of cell death – were previously discovered by Dr. Moshe Oren of the Weizmann Institute of Science, another member of the current research team. These properties were thought to explain the main cancer protection activity of p53. However, the new research now described in Nature describes a different mechanism of action of p53 -- inhibition of cell invasion -- which may be the most critical means of cancer-protection in colon and rectal cancers and possibly other types of epithelial cancers.

Two Hebrew University doctoral students on the investigative team, Ela Elyada and Ariel Pribluda, developed a new mouse model in which they were able to demonstrate a process of genetically induced invasiveness of tumorous tissue and how that process could be prevented as long as p53 could be kept activated.

The new study may have important implications for cancer diagnosis and therapy.
The discovery of new invasion-activating genes could serve as diagnostic biomarkers for distinguishing malignant from benign lesions and the early detection of invasive cancer. This distinction is a critical determinant of therapeutic options, a judgment based today solely on microscopic study of tissue slides. With the availability of a prompt and exact molecular definition of invasive versus non-invasive lesions, lives could be saved by allowing the early implementation of curative treatments while withholding patient overtreatment, which often results in serious morbidity.

The reported findings may also indicate new measures for ways to maintain activation of p53 as a safeguard against malignant transformation of epithelial tissues.

This study was primarily funded by research grants from the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation and the Israel Science Foundation.

For further information:
Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>