Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism for invasion of tumorous cells discovered ...

11.04.2011
... by Hebrew University researchers opens door for possible early detection, treatment of cancer

Researchers at the Hebrew University of Jerusalem have discovered a previously unknown mechanism whereby tumor cells invade normal tissues, spreading cancer through various organs.

The ability of tumor cells to invade adjacent structures is a prerequisite for metastasis and distinguishes malignant tumors from benign ones. Thus, understanding the mechanisms that drive malignant cells to invade and a possible avenue for halting that mechanism could have tremendous potential for enhancing early detection of malignant cells and for therapeutic treatment.

It has previously been assumed that tumor cells turn invasive upon accumulation of multiple mutations, each giving the cancer cell some invasive properties

Now, Prof. Yinon Ben-Neriah and Dr. Eli Pikarsky of the Institute for Medical Research Israel-Canada at the Hebrew University Faculty of Medicine and their colleagues are reporting an alternative mechanism through which tumor cells become invasive. They found a program that is operated by a concerted group of genes that, when activated together, confer invasive properties upon epithelial cells. (Epithelial tissues line the cavities and surfaces of structures throughout the body, and also form many glands.) An article reporting their work appeared in a recent issue of the journal Nature.

Interestingly, the expression of this entire gene group is normally suppressed by a single gene – p53 – that is considered as the most important tumor suppressor but unfortunately is inactivated in the majority of human cancers. Some key properties of the protein produced by the p53 gene -- arresting cell growth and induction of cell death – were previously discovered by Dr. Moshe Oren of the Weizmann Institute of Science, another member of the current research team. These properties were thought to explain the main cancer protection activity of p53. However, the new research now described in Nature describes a different mechanism of action of p53 -- inhibition of cell invasion -- which may be the most critical means of cancer-protection in colon and rectal cancers and possibly other types of epithelial cancers.

Two Hebrew University doctoral students on the investigative team, Ela Elyada and Ariel Pribluda, developed a new mouse model in which they were able to demonstrate a process of genetically induced invasiveness of tumorous tissue and how that process could be prevented as long as p53 could be kept activated.

The new study may have important implications for cancer diagnosis and therapy.
The discovery of new invasion-activating genes could serve as diagnostic biomarkers for distinguishing malignant from benign lesions and the early detection of invasive cancer. This distinction is a critical determinant of therapeutic options, a judgment based today solely on microscopic study of tissue slides. With the availability of a prompt and exact molecular definition of invasive versus non-invasive lesions, lives could be saved by allowing the early implementation of curative treatments while withholding patient overtreatment, which often results in serious morbidity.

The reported findings may also indicate new measures for ways to maintain activation of p53 as a safeguard against malignant transformation of epithelial tissues.

This study was primarily funded by research grants from the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation and the Israel Science Foundation.

For further information:
Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>