Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism for invasion of tumorous cells discovered ...

11.04.2011
... by Hebrew University researchers opens door for possible early detection, treatment of cancer

Researchers at the Hebrew University of Jerusalem have discovered a previously unknown mechanism whereby tumor cells invade normal tissues, spreading cancer through various organs.

The ability of tumor cells to invade adjacent structures is a prerequisite for metastasis and distinguishes malignant tumors from benign ones. Thus, understanding the mechanisms that drive malignant cells to invade and a possible avenue for halting that mechanism could have tremendous potential for enhancing early detection of malignant cells and for therapeutic treatment.

It has previously been assumed that tumor cells turn invasive upon accumulation of multiple mutations, each giving the cancer cell some invasive properties

Now, Prof. Yinon Ben-Neriah and Dr. Eli Pikarsky of the Institute for Medical Research Israel-Canada at the Hebrew University Faculty of Medicine and their colleagues are reporting an alternative mechanism through which tumor cells become invasive. They found a program that is operated by a concerted group of genes that, when activated together, confer invasive properties upon epithelial cells. (Epithelial tissues line the cavities and surfaces of structures throughout the body, and also form many glands.) An article reporting their work appeared in a recent issue of the journal Nature.

Interestingly, the expression of this entire gene group is normally suppressed by a single gene – p53 – that is considered as the most important tumor suppressor but unfortunately is inactivated in the majority of human cancers. Some key properties of the protein produced by the p53 gene -- arresting cell growth and induction of cell death – were previously discovered by Dr. Moshe Oren of the Weizmann Institute of Science, another member of the current research team. These properties were thought to explain the main cancer protection activity of p53. However, the new research now described in Nature describes a different mechanism of action of p53 -- inhibition of cell invasion -- which may be the most critical means of cancer-protection in colon and rectal cancers and possibly other types of epithelial cancers.

Two Hebrew University doctoral students on the investigative team, Ela Elyada and Ariel Pribluda, developed a new mouse model in which they were able to demonstrate a process of genetically induced invasiveness of tumorous tissue and how that process could be prevented as long as p53 could be kept activated.

The new study may have important implications for cancer diagnosis and therapy.
The discovery of new invasion-activating genes could serve as diagnostic biomarkers for distinguishing malignant from benign lesions and the early detection of invasive cancer. This distinction is a critical determinant of therapeutic options, a judgment based today solely on microscopic study of tissue slides. With the availability of a prompt and exact molecular definition of invasive versus non-invasive lesions, lives could be saved by allowing the early implementation of curative treatments while withholding patient overtreatment, which often results in serious morbidity.

The reported findings may also indicate new measures for ways to maintain activation of p53 as a safeguard against malignant transformation of epithelial tissues.

This study was primarily funded by research grants from the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation and the Israel Science Foundation.

For further information:
Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>