Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism explains how the body prevents formation of blood vessels

13.11.2009
Researchers at Uppsala University, in collaboration with colleagues in Sweden and abroad, have identified an entirely new mechanism by which a specific protein in the body inhibits formation of new blood vessels.

Inhibiting the formation of new blood vessels is an important aspect of, for example, cancer treatment. The study is published in the November issue of the journal Molecular Cancer Research.

Angiogenesis, the formation of new blood vessels, is strictly regulated by a number of molecules that serve to either promote or inhibit the process. Certain diseases are characterised by excessive or insufficient angiogenesis. The rapid growth of tumors, for example, is conditioned on the formation of new blood vessels to supply oxygen and nutrients, which explains why angiogenesis is accelerated in cancer patients.

"At present, there are five approved drugs for inhibiting formation of new blood vessels," says research fellow Anna-Karin Olsson of the Department of Medical Biochemistry and Microbiology at Uppsala University, who headed the study. "All of these medications work in a similar way, by influencing the function of one of the agents that promotes angiogenesis. A problem with the medications is that the body develops resistance to them as treatment progresses. Improved knowledge about which molecules promote or inhibit the formation of blood vessels in the body, and the mechanisms by which they operate, is accordingly a research goal."

The study in question involved researchers from Uppsala University collaborating with colleagues in Sweden, Norway, Finland and Germany to investigate the function of histidine-rich glycoprotein (HRG), a plasma protein naturally present in the body. Previous studies involving mice had shown that HRG inhibits angiogenesis and tumor growth. The new study demonstrates, among other things, that the HRG fragment responsible for the inhibitory effect is present in human tissue, which suggests that it serves as one of the body's own angiogenesis inhibitors.

The HRG fragment in question inhibits angiogenesis by binding to endothelial cells, which participate in the formation of blood vessels. Analysis of a large number of human tissue samples allowed the researchers to determine that the HRG fragment binds to blood vessels in cancer patients but not in healthy persons. The study also showed that the HRG fragment binds to blood vessels in the presence of activated platelets, blood cells that limit bleeding in the event of injury. This finding is interesting in view of the fact that cancer patients often exhibit high levels of platelet activation.

"Our findings suggest that attempting to inhibit angiogenesis is an aspect of the body's own reaction to diseases like cancer," says Anna-Karin Olsson. "The activated platelets create a microenvironment in which the HRG fragment is able to function as an angiogenesis inhibitor."

Data from so-called "knockout" mice, which lack HRG, support this conclusion. The mice are healthy and fertile, but exhibit high levels of angiogenesis in connection with tumor growth. This finding is consistent with the hypothesis that the mice lack an angiogenesis inhibitor.

"Our data describes an entirely new mechanism of action for an endogenous angiogenesis inhibitor," says Anna-Karin Olsson. "This knowledge may eventually help in developing new, more effective drugs for inhibiting angiogenesis during disease treatment without affecting healthy vessels."

Anna-Karin Olsson | EurekAlert!
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>