Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Mechanism Discovered In First Line of Immune Defence

11.09.2013
A*STAR scientists’ discovery opens doors to developing new therapies to eradicate tumour cells and combat infections

1. Scientists from A*STAR’s Singapore Immunology Network (SIgN) have discovered a new defense mechanism that the immune system utilises to combat infections. The team’s discovery of how a novel protein unexpectedly activates an immune response shows how this mechanism can also be used to get rid of tumour cells. This research was done in collaboration with University Hospital Basel, Switzerland, published in July 2013 in Nature Immunology.

2. The immune system combats microbes using several strategies, of which early activation of defence is one of the most important. The mechanisms used by the immune system to counterattack microbes often rely on the immediate recognition of microbes, or of cells that have been affected by the infection of microbes.

3. The team at SIgN led by Prof Gennaro De Libero has identified a novel mechanism of how the immune system readily detects invading microbes and effectively initiates early immune responses, by activating a special class of cells called gamma delta lymphocytes. Gamma delta lymphocytes were discovered more than 30 years ago and had been identified as cells that are capable of early protection as they play a decisive role in the first line of immune defence. However, many studies into discovering the mechanisms of how these cells are activated when microbes attack have been unfruitful.

4. The team’s discovery of a protein called Butyrophilin 3A1 shows how it binds to microbial antigens and hence activates human gamma delta cells. These cells are then able to coordinate an immune response to clear the infection caused by invading microbes.

5. This protein has also been found to bind antigens that are produced in large amounts in tumour cells, which then activates gamma delta cells against these tumour cells. The discovery of this mechanism thus represents a novel target that will help to eradicate tumours and combat infections.

6. Prof De Libero said, “The identification of the molecular mechanisms of how human gamma delta cells get activated opens doors to novel opportunities for immunotherapy of infections and tumours.”

7. Prof Philippe Kourilsky, Chairman of SIgN said, “This study is a breakthrough in immunology and also an excellent example of basic science as an important premise to medicine.”

8. Prof Laurent Rénia, Acting Executive Director of SIgN said, “We are delighted that this excellent science has paved the way for many others in immunology and other fields. I believe that these findings present great promise in developing new treatments for cancer therapy and infectious diseases.”

Notes for Editor:

The research findings described in this media release can be found in the 21 July 2013 online issue of Nature Immunology under the title, “Butyrophilin 3A1 binds phosphorylated antigens and stimulates human gamma delta T cells” by Stefano Vavassori1,#, Anil Kumar2,#, Gan Siok Wan2, Gundimeda S Ramanjaneyulu1, Marco Cavallari1, Sary El Daker2, Travis Beddoe3, Alex Theodossis3, Neal K Williams3, Emma Gostick4, David A Price4, Dinish U Soudamini5, Kong Kien Voon5, Malini Olivo5, Jamie Rossjohn3,4, Lucia Mori1,2 & Gennaro De Libero1,2

1 Experimental Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland

2 Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore

3 Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia

4 Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK

5 Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Biopolis, Singapore

# These authors contributed equally to this work.
Correspondence should be addressed to G.D.L. (Gennaro_delibero@immunol.a-star.edu.sg)

AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH (A*STAR)

For media queries and clarifications, please contact:

Vithya Selvam (Ms)

Corporate Communications

Agency for Science, Technology and Research

Tel: (+65) 6826 6291

Email: vithya_selvam@a-star.edu.sg

________________________________________________________________

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, and with other local and international partners.

For more information about A*STAR, please visit www.a-star.edu.sg.

About the Singapore Immunology Network (SIgN)

The Singapore Immunology Network (SIgN), officially inaugurated on 15 January 2008, is a research consortium under the Agency for Science, Technology and Research (A*STAR)’s Biomedical Research Council. The mandate of SIgN is to advance human immunology research and participate in international efforts to combat major health problems. Since its launch, SIgN has grown rapidly and currently includes 250 scientists from 26 different countries around the world working under 28 renowned principal investigators. At SIgN, researchers investigate immunity during infection and various inflammatory conditions including cancer and are supported by cutting edge technological research platforms and core services.

Through this, SIgN aims to build a strong platform in basic human immunology research for better translation of research findings into clinical applications. SIgN also sets out to establish productive links with local and international institutions, and encourage the exchange of ideas and expertise between academic, industrial and clinical partners and thus contribute to a vibrant research environment in Singapore.

For more information about SIgN, please visit www.sign.a-star.edu.sg.

Vithya Selvam | EurekAlert!
Further information:
http://www.a-star.edu.sg

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>