Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism behind cocaine craving identified

15.08.2008
A possible future way to prevent relapses into drug dependence has been discovered by researchers at Linköping University in Sweden and the German cancer research center DKFZ. The target is the dopamine-producing nerve cells in the midbrain.

Earlier research has shown that these cells become more excitable when a person takes drugs. To find out the functional meaning of this, these researchers used a mouse model for cocaine dependence.

When they blocked the cells' receptors for glutamate ­- the brain's most important signal substance -­ the risk of relapsing into addiction vanished. The findings are being published in the highly ranked journal Neuron.

Dopamine-producing nerve cells are central to the brain's reward system. Dependence-inducing drugs cause concentrations of dopamine to rise in the surroundings, which in turn affects other nerve cells and brings about various physical and mental reactions.

Cocaine has a very rapid impact on dopamine levels, which explains why it is one of the most addictive drugs.

"When you take cocaine, the number of glutamate receptors increases, rendering the cell more excitable. When we block this process, we prevent relapses into addiction. This is interesting clinically since that is the phase when we can get hold of patients," says David Engblom, a neurobiologist at Linköping University and the study's lead author.

An addict who wants to give up drugs could thus be offered a 'vaccination' against relapsing. But much more research remains to be done before such treatment can become a reality.

The article "Glutamate Receptors on Dopamine Neurons Control the Persistence of Cocaine-Seeking" by David Engblom et al. is being published in Neuron on August 14.

Contact:
David Engblom, Assistant professor,
Division of Cell Biology,
cell phone: +46 (0)70-2611302; e-mail: daven@ibk.liu.se

Åke Hjelm | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>