Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism behind cocaine craving identified

15.08.2008
A possible future way to prevent relapses into drug dependence has been discovered by researchers at Linköping University in Sweden and the German cancer research center DKFZ. The target is the dopamine-producing nerve cells in the midbrain.

Earlier research has shown that these cells become more excitable when a person takes drugs. To find out the functional meaning of this, these researchers used a mouse model for cocaine dependence.

When they blocked the cells' receptors for glutamate ­- the brain's most important signal substance -­ the risk of relapsing into addiction vanished. The findings are being published in the highly ranked journal Neuron.

Dopamine-producing nerve cells are central to the brain's reward system. Dependence-inducing drugs cause concentrations of dopamine to rise in the surroundings, which in turn affects other nerve cells and brings about various physical and mental reactions.

Cocaine has a very rapid impact on dopamine levels, which explains why it is one of the most addictive drugs.

"When you take cocaine, the number of glutamate receptors increases, rendering the cell more excitable. When we block this process, we prevent relapses into addiction. This is interesting clinically since that is the phase when we can get hold of patients," says David Engblom, a neurobiologist at Linköping University and the study's lead author.

An addict who wants to give up drugs could thus be offered a 'vaccination' against relapsing. But much more research remains to be done before such treatment can become a reality.

The article "Glutamate Receptors on Dopamine Neurons Control the Persistence of Cocaine-Seeking" by David Engblom et al. is being published in Neuron on August 14.

Contact:
David Engblom, Assistant professor,
Division of Cell Biology,
cell phone: +46 (0)70-2611302; e-mail: daven@ibk.liu.se

Åke Hjelm | idw
Further information:
http://www.vr.se

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>