Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measles – new active ingredient may have a protective effect against local outbreaks?

17.04.2014

A newly developed inhibitory substance against the measles virus may protect individuals already infected from the disease and prevent the spreading of the virus. The inhibitory substance which can be administered in tablet form reduces the viral burden in animals infected with a virus which is closely related to the measles virus. Besides, it also protects the animals from a fatal course of the disease. In its online edition of Wednesday, 16th April (20:00 MEZ) Science Translational Medicine reports on research results from scientists at the Paul-Ehrlich-Institut and Georgia State University

Despite world-wide efforts to eradicate the disease, measles outbreaks still occur time and again among the German population due to incomplete vaccination rates. In 2013 alone, 1775 measles cases in Germany were reported to the Robert-Koch-Institute. Against this background, an inhibitory substance would be helpful which protects the patient after an infection with the virus and reduces the risk of further spreading of the virus.


Cells infected with drug-resistant (green fluorescence) and wild type (red fluorescence) recombinant canine distemper virus. Infected cells were treated with ERDRP-0519, or received solvent only

Foto: Georgia State University

Professor R. Plemper of the Institute for Biomedical Sciences, Georgia State University, Atlanta, USA, and colleagues have developed a low-molecular inhibitory substance against the measles virus, which is available for oral administration and could be administered in tablet form. The active substance, called ERDRP-0159, inhibits RNA-dependent RNA polymerase, which is indispensable for the replication of the virus.

Up to now, the development of a suitable inhibitory substance against virus has barely been possible because a suitable animal model for efficacy testing was not available. Dr Veronika von Messling, head of the Veterinary Medicine Division of the Paul-Ehrlich-Institut, and colleagues have succeeded in establishing an animal model in the ferret for this purpose. This project forms part of the institute’s involvement in the German Centre for Infection Research (DZIF).

The research group used a very close relative of the measles virus, the canine distemper virus (CDV) for their experiments. Like the measles virus, this virus belongs to the family of morbilliviruses. An infection with this virus will lead to fatal outcome in ferrets. However, if the animals were treated with the inhibitory substance for 14 days as from the third day after the infection, all ferrets survived the virus infection. Besides, the treatment, which was very well tolerated by the animals, conferred the development of immune protection against the measles virus. A new infection with the virus did not cause disease.

The most important obstacle to be overcome in the development of medicines against viruses is that the virus frequently develops resistance. Experiments with some virus variants showed that the infectious disease induced by them was attenuated or the course of the infection was slowed down. Dr Messing explains the results: “Our experiments allow us to forecast that such resistance development would not spread among the population – especially based on the fact that the measles outbreaks are as a rule locally restricted because the major part of the population has been vaccinated”.

The results obtained so far give rise to optimism. However, there are still some important questions to be answered. Thus, it must still be established whether treatment with the inhibitory substance against the measles will also confer immunity against the virus in humans after treatment, or whether subsequent vaccination would be necessary to assure long-term protection against a measles infection.

Original publication: Krumm SA, Yan D, Hovingh E, Evers TJ, Enkirch T, Reddy GP, Sun A, Saindane MT, Arrendale RF, Painter G, Liotta DC, Natchus MG, von Messling V, Plemper RK (2014). Orally Available Small-Molecule Polymerase Inhibitor Cures a Lethal Morbillivirus Infection.

The Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines in Langen near Frankfurt/Main, is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and veterinary vaccines. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections.

In-house experimental research in the field of biomedicines and life science form an indispensable basis for the varied and many tasks performed at the institute. The PEI, with its roughly 800 staff, also has advisory functions at a national level (federal government, federal states (Länder)), and at an international level (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://www.dzif.de German Centre for Infection Research (DZIF)
http://www.pei.de/EN/information/journalists-press/press-releases/press-releases... Paul-Ehrlich-Institut, Press releases

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

Further reports about: Arzneimittel DZIF Health Impfstoffe Medicine Paul-Ehrlich-Institut animals resistance vaccination

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

The Exception and its Rules

25.07.2016 | Physics and Astronomy

Using Ultrashort Pulsed Laser Radiation to Process Fibre-Reinforced Components

25.07.2016 | Materials Sciences

Added bacterial film makes new mortar resistant to water uptake

25.07.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>