Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measles – new active ingredient may have a protective effect against local outbreaks?

17.04.2014

A newly developed inhibitory substance against the measles virus may protect individuals already infected from the disease and prevent the spreading of the virus. The inhibitory substance which can be administered in tablet form reduces the viral burden in animals infected with a virus which is closely related to the measles virus. Besides, it also protects the animals from a fatal course of the disease. In its online edition of Wednesday, 16th April (20:00 MEZ) Science Translational Medicine reports on research results from scientists at the Paul-Ehrlich-Institut and Georgia State University

Despite world-wide efforts to eradicate the disease, measles outbreaks still occur time and again among the German population due to incomplete vaccination rates. In 2013 alone, 1775 measles cases in Germany were reported to the Robert-Koch-Institute. Against this background, an inhibitory substance would be helpful which protects the patient after an infection with the virus and reduces the risk of further spreading of the virus.


Cells infected with drug-resistant (green fluorescence) and wild type (red fluorescence) recombinant canine distemper virus. Infected cells were treated with ERDRP-0519, or received solvent only

Foto: Georgia State University

Professor R. Plemper of the Institute for Biomedical Sciences, Georgia State University, Atlanta, USA, and colleagues have developed a low-molecular inhibitory substance against the measles virus, which is available for oral administration and could be administered in tablet form. The active substance, called ERDRP-0159, inhibits RNA-dependent RNA polymerase, which is indispensable for the replication of the virus.

Up to now, the development of a suitable inhibitory substance against virus has barely been possible because a suitable animal model for efficacy testing was not available. Dr Veronika von Messling, head of the Veterinary Medicine Division of the Paul-Ehrlich-Institut, and colleagues have succeeded in establishing an animal model in the ferret for this purpose. This project forms part of the institute’s involvement in the German Centre for Infection Research (DZIF).

The research group used a very close relative of the measles virus, the canine distemper virus (CDV) for their experiments. Like the measles virus, this virus belongs to the family of morbilliviruses. An infection with this virus will lead to fatal outcome in ferrets. However, if the animals were treated with the inhibitory substance for 14 days as from the third day after the infection, all ferrets survived the virus infection. Besides, the treatment, which was very well tolerated by the animals, conferred the development of immune protection against the measles virus. A new infection with the virus did not cause disease.

The most important obstacle to be overcome in the development of medicines against viruses is that the virus frequently develops resistance. Experiments with some virus variants showed that the infectious disease induced by them was attenuated or the course of the infection was slowed down. Dr Messing explains the results: “Our experiments allow us to forecast that such resistance development would not spread among the population – especially based on the fact that the measles outbreaks are as a rule locally restricted because the major part of the population has been vaccinated”.

The results obtained so far give rise to optimism. However, there are still some important questions to be answered. Thus, it must still be established whether treatment with the inhibitory substance against the measles will also confer immunity against the virus in humans after treatment, or whether subsequent vaccination would be necessary to assure long-term protection against a measles infection.

Original publication: Krumm SA, Yan D, Hovingh E, Evers TJ, Enkirch T, Reddy GP, Sun A, Saindane MT, Arrendale RF, Painter G, Liotta DC, Natchus MG, von Messling V, Plemper RK (2014). Orally Available Small-Molecule Polymerase Inhibitor Cures a Lethal Morbillivirus Infection.

The Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines in Langen near Frankfurt/Main, is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and veterinary vaccines. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections.

In-house experimental research in the field of biomedicines and life science form an indispensable basis for the varied and many tasks performed at the institute. The PEI, with its roughly 800 staff, also has advisory functions at a national level (federal government, federal states (Länder)), and at an international level (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://www.dzif.de German Centre for Infection Research (DZIF)
http://www.pei.de/EN/information/journalists-press/press-releases/press-releases... Paul-Ehrlich-Institut, Press releases

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

Further reports about: Arzneimittel DZIF Health Impfstoffe Medicine Paul-Ehrlich-Institut animals resistance vaccination

More articles from Life Sciences:

nachricht More than just a mechanical barrier – epithelial cells actively combat the flu virus
04.05.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>