Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic Genomic Analysis Lends Insight to Prostate Cancer

24.05.2013
Mayo Clinic researchers have used next generation genomic analysis to determine that some of the more aggressive prostate cancer tumors have similar genetic origins, which may help in predicting cancer progression. The findings appear online today in the journal Cancer Research.

"This is the first study to examine DNA alterations using next generation sequencing in adjacent Gleason patterns in the same tumor allowing us to correlate genomics with changes in pathology," says John Cheville, M.D., Mayo Clinic pathologist and one of the authors on the paper.

The standard method of evaluating prostate cancer biopsy samples is a numerical scoring system called Gleason grading. A pathologist examines the tumor sample under the microscope, giving it a Gleason score based on the pattern of its cells. Since many prostate cancers contain more than one pattern, the two most common patterns are added together to provide the Gleason score. The Gleason score is the strongest predictor of outcome, with high scores indicating more aggressive prostate cancer. This study focused on Gleason patterns of three and four (Gleason score 7), a combination that indicates a cancer with increased risk of progression.

"While each pattern had its own breakpoints, they shared identical ones, which implies a common origin," Dr. Cheville says. DNA changes associated with aggressive prostate cancer were identified in the lower Gleason pattern, indicating that genomic changes occurred before they could be recognized by a pathologist. By understanding these lineage relationships within a tumor, he says, physicians will be better able to predict progression of the cancer and, in turn, better manage patients including those who chose no treatment but enter a follow-up program called active surveillance.

To determine relationships among the Gleason patterns of each tumor sample the team used laser capture micro dissection, whole genome amplification and next generation sequencing. They examined 14 tumors and found over 3,000 unique chromosomal alterations among all tumors and 300 that appeared in at least two of the tumors. They also found that Gleason pattern 3 in each tumor had more alterations in common with its corresponding Gleason pattern 4 than it did with Gleason pattern 3 from other patients.

Others involved in the study are co-first author Irina Kovtun, Ph.D.; Stephen Murphy, Ph.D.; Sarah Johnson; Shabnam Zarei, M.D.; Farhad Kosari, Ph.D.; William Sukov, M.D.; R. Jeff Karnes, M.D. and George Vasmatzis, Ph.D.

The research was supported by a Waterman Biomarker Discovery grant; and by the Center for Individualized Medicine, the Office of Intellectual Property, and the Department of Laboratory Medicine and Pathology, all at Mayo Clinic. Tissue samples were provided by the National Institutes of Health.

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit MayoClinic.com or MayoClinic.org/news.

Journalists can become a member of the Mayo Clinic News Network for the latest health, science and research news and access to video, audio, text and graphic elements that can be downloaded or embedded.

Media Contact
Robert Nellis
507-284-5005 (days)
507-284-2511 (evenings)
newsbureau@mayo.edu

Bob Nellis | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.org/news2013-rst/7483.html

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>