Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo Clinic Finds Genetic Variation That Protects Against Parkinson's Disease

An international team of researchers led by neuroscientists at Mayo Clinic in Florida has found a genetic variation they say protects against Parkinson's disease.

The gene variants cut the risk of developing the disease by nearly 20 percent in many populations. The study, published in the online Aug. 31 issue of Lancet Neurology, also reports the discovery of different variants of the same gene, LRRK2— the most important Parkinson's risk gene found to date — that double Parkinson's risk in Caucasians and Asians.

Parkinson's disease is a common movement disorder that affects 1 to 2 percent of people over age 65. The researchers say that although the relative influence of the variants in this study on risk is small, given the late-onset nature of Parkinson's, any variation that can delay the disease is important. In addition, the finding provides evidence that Parkinson's disease is influenced by multiple genetic risks that act together to cause disease.

"The idea that Parkinson's disease occurs mostly in a random sporadic fashion is changing," says lead investigator Owen Ross, Ph.D., a neuroscientist at Mayo Clinic Florida. "Our study, one of the largest to date in the study of the genetics of Parkinson's disease, shows that a single gene, LRRK2, harbors both rare and common variants that in turn alter the susceptibility to PD in diverse populations.''

Researchers hope to use these and future genetic findings to predict who is at risk of Parkinson's and to develop novel targeted therapies, Dr. Ross says.

The Genetic Epidemiology of Parkinson's Disease consortium that contributed to the three-year study included investigators from 23 sites representing 15 countries on five continents. The investigators contributed clinical samples on a total of 15,540 individuals (8,611 PD patients and 6,929 controls). The researchers in Mayo Clinic Florida, funded by The Michael J. Fox Foundation for Parkinson's Research and the Mayo Clinic Morris K. Udall Center of Excellence in Parkinson's disease Research, then quantified Parkinson's risk for each LRRK2 variant. Co- investigator Matthew Farrer, Ph.D., is a former Mayo Clinic neuroscientist now at the University of British Columbia in Vancouver.

"This is an important study that will help us learn more about how the same gene can both increase and reduce risk of late-onset, sporadic Parkinson's disease, the kind that affects most people," says co-author Zbigniew Wszolek, M.D., a Mayo Clinic neurologist who has helped build international collaborations at Mayo Clinic. "Our goal is to find out how we can intervene in this process to help prevent development of this disease."

In 2004,Mayo researchers led by Dr. Wszolek discovered that the little understood LRRK2 gene was responsible for causing a form of "familial" or inherited Parkinson's. "Through this study and subsequent follow-up investigation, we and others identified a LRRK2 variant (G2019S) which turned out to be the most common genetic cause of familial PD yet found. For example, it is found in more than 30 percent of Arab-Berber patients with the disease," he says. To date, seven such familial pathogenic LRRK2 variants have been discovered in different ethnic populations.

However, LRRK2 variation has also been found to increase the risk of sporadic late-onset Parkinson's, so in this study, researchers set out to address every possible variant in the part of the LRRK2 gene that codes for protein production to determine which variants affect risk, and by how much. The researchers found that common and rare variants contributed to late-onset sporadic PD in both a risk or protective manner. Dr Ross adds that there remain many more PD risk genes to be found outside of LRRK2, and that together they contribute to a significantly higher likelihood of developing PD.

Major funding for the study also came from the National Institutes of Health, Mayo Foundation, and several international funding agencies.

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit or

Kevin Punsky | EurekAlert!
Further information:

Further reports about: Genetic clues LRRK2 Parkinson Parkinson's disease Single gene gene variant

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>