Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic Finds Genetic Variation That Protects Against Parkinson's Disease

31.08.2011
An international team of researchers led by neuroscientists at Mayo Clinic in Florida has found a genetic variation they say protects against Parkinson's disease.

The gene variants cut the risk of developing the disease by nearly 20 percent in many populations. The study, published in the online Aug. 31 issue of Lancet Neurology, also reports the discovery of different variants of the same gene, LRRK2— the most important Parkinson's risk gene found to date — that double Parkinson's risk in Caucasians and Asians.

Parkinson's disease is a common movement disorder that affects 1 to 2 percent of people over age 65. The researchers say that although the relative influence of the variants in this study on risk is small, given the late-onset nature of Parkinson's, any variation that can delay the disease is important. In addition, the finding provides evidence that Parkinson's disease is influenced by multiple genetic risks that act together to cause disease.

"The idea that Parkinson's disease occurs mostly in a random sporadic fashion is changing," says lead investigator Owen Ross, Ph.D., a neuroscientist at Mayo Clinic Florida. "Our study, one of the largest to date in the study of the genetics of Parkinson's disease, shows that a single gene, LRRK2, harbors both rare and common variants that in turn alter the susceptibility to PD in diverse populations.''

Researchers hope to use these and future genetic findings to predict who is at risk of Parkinson's and to develop novel targeted therapies, Dr. Ross says.

The Genetic Epidemiology of Parkinson's Disease consortium that contributed to the three-year study included investigators from 23 sites representing 15 countries on five continents. The investigators contributed clinical samples on a total of 15,540 individuals (8,611 PD patients and 6,929 controls). The researchers in Mayo Clinic Florida, funded by The Michael J. Fox Foundation for Parkinson's Research and the Mayo Clinic Morris K. Udall Center of Excellence in Parkinson's disease Research, then quantified Parkinson's risk for each LRRK2 variant. Co- investigator Matthew Farrer, Ph.D., is a former Mayo Clinic neuroscientist now at the University of British Columbia in Vancouver.

"This is an important study that will help us learn more about how the same gene can both increase and reduce risk of late-onset, sporadic Parkinson's disease, the kind that affects most people," says co-author Zbigniew Wszolek, M.D., a Mayo Clinic neurologist who has helped build international collaborations at Mayo Clinic. "Our goal is to find out how we can intervene in this process to help prevent development of this disease."

In 2004,Mayo researchers led by Dr. Wszolek discovered that the little understood LRRK2 gene was responsible for causing a form of "familial" or inherited Parkinson's. "Through this study and subsequent follow-up investigation, we and others identified a LRRK2 variant (G2019S) which turned out to be the most common genetic cause of familial PD yet found. For example, it is found in more than 30 percent of Arab-Berber patients with the disease," he says. To date, seven such familial pathogenic LRRK2 variants have been discovered in different ethnic populations.

However, LRRK2 variation has also been found to increase the risk of sporadic late-onset Parkinson's, so in this study, researchers set out to address every possible variant in the part of the LRRK2 gene that codes for protein production to determine which variants affect risk, and by how much. The researchers found that common and rare variants contributed to late-onset sporadic PD in both a risk or protective manner. Dr Ross adds that there remain many more PD risk genes to be found outside of LRRK2, and that together they contribute to a significantly higher likelihood of developing PD.

Major funding for the study also came from the National Institutes of Health, Mayo Foundation, and several international funding agencies.

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit MayoClinic.com or MayoClinic.org/news.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: Genetic clues LRRK2 Parkinson Parkinson's disease Single gene gene variant

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>