Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mathematics behind a good night's sleep

26.02.2010
Why can't I fall asleep? Will this new medication keep me up all night? Can I sleep off this cold?

Despite decades of research, answers to these basic questions about one of our most essential bodily functions remain exceptionally difficult to answer. In fact, researchers still don't fully understand why we even sleep at all.

In an effort to better understand the sleep-wake cycle and how it can go awry, researchers at Rensselaer Polytechnic Institute are taking a different approach than the traditional brain scans and sleep studies. They are using mathematics.

Professor of Mathematics Mark Holmes and his graduate student Lisa Rogers are using math to develop a new computer model that can be easily manipulated by other scientists and doctors to predict how different environmental, medical, or physical changes to a person's body will affect their sleep. Their model will also provide clues to the most basic dynamics of the sleep-wake cycle.

"We wanted to create a very interdisciplinary tool to understand the sleep-wake cycle," Holmes said. "We based the model on the best and most recent biological findings developed by neurobiologists on the various phases of the cycle and built our mathematical equations from that foundation. This has created a model that is both mathematically and biologically accurate and useful to a variety of scientists.

"This is also an important example of how applied mathematics can be used to solve real issues in science and medicine," Holmes continued.

To create the model, the researchers literally rolled up their sleeves and took to the laboratory before they put pencil to paper on the mathematical equations. Rogers spent last summer with neurobiologists at Harvard Medical School to learn about the biology of the brain. She investigated the role of specific neurotransmitters within the brain at various points in the sleep-wake cycle. The work taught the budding mathematician how to read EEG (electroencephalography) and EMG (electromyography) data on the brainwaves and muscle activity that occur during the sleep cycle. This biologic data would form the foundation of their mathematic calculations.

This research foundation allowed the team to develop a massive 11-equation model of the sleep-wake cycle. They are now working to input those differential equations into an easy-to-use graphic computer model for biologists and doctors to study.

"We have developed a model that can serve other researchers as a benchmark of the ideal, healthy sleep-wake cycle," Holmes said. "Scientists will be able to take this ideal model and predict how different disturbances such as caffeine or jet lag will impact that ideal cycle. This is a very non-invasive way to study the brain and sleep that will provide important clues on how to overcome these disturbances and allow patients to have better and more undisturbed sleep."

Rogers will continue her work on the program after receiving her doctoral degree in applied mathematics from Rensselaer this spring. Her work on the mathematics of the sleep-wake cycle has already garnered attention within the scientific community, earning her a postdoctoral research fellowship from the National Science Foundation (NSF). With the fellowship, Rogers will continue her work at New York University and begin to incorporate other aspects of the sleep-wake cycle in the model such as the impacts of circadian rhythms.

Gabrielle DeMarco | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated

25.04.2018 | Power and Electrical Engineering

Electrode shape improves neurostimulation for small targets

25.04.2018 | Medical Engineering

Silicon as a new storage material for the batteries of the future

25.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>