Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine microbes creating green waves in industry

11.08.2009
New technology designed to analyse large numbers of novel marine microbes could lead to more efficient and greener ways to manufacture new drugs for conditions such as epilepsy, diabetes, flu and other viruses, as well as improving the manufacture of other products such as agrochemicals.

Researchers at Heriot-Watt University and Plymouth Marine Laboratory (PML) in collaboration with Edinburgh based company Ingenza Ltd are searching for new enzymes for use as manufacturing tools in the pharmaceutical and agrochemical industries.

The research project, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Technology Strategy Board (TSB), uses biochemical techniques to identify potentially useful enzymes in microbes that are found in the sea.

This work brings important expertise from industry together with academic researchers. The value in this approach is to take specific knowledge and expertise in biochemistry and molecular biology, coupled with novel and diverse marine microbes, right through to high-yielding, scalable and economic manufacturing processes. These processes use enzyme catalysts from the marine microbes, which lead to greener and cleaner manufacturing methods.

Dr Robert Speight, from Ingenza Ltd, explained: "We are using biology in our chemical processes to come up with improved manufacturing routes. We are taking advantage of the natural diversity of marine organisms that has arisen through evolution in different environments and coupling that with high-tech screening systems. We are looking to find naturally occurring microbes that already have a built-in capacity to do the chemical reactions we want to perform in industry. There is every possibility of developing more efficient and sustainable manufacturing solutions - for pharmaceuticals and agrochemicals in particular - as a result of this search."

Microorganisms account for more than 95 per cent of ocean biomass but relatively little is really known about them and their potential applications. The research team's search is for industrially relevant enzymes which will reduce waste and increase productivity in the manufacture of drugs and agrochemicals. The enzymes they seek have the ability to convert compounds that would have previously been waste products in the manufacturing process, into the desired product, therefore increasing the efficiency of the process.

Professor Mark Keane, from Heriot-Watt University, said: "Our approach is to look for microbes which can promote the chemical reactions that we want to use in manufacturing. We then treat the microbes under conditions where they produce the key enzymes in higher yield, which we finally purify. The enzymes then undergo systematic testing to evaluate their activity, which enables us to pinpoint candidates that exhibit the best performance."

We are now identifying microbes with a type of enzyme called an amine oxidase. This could be key to cheaper, more efficient and sustainable process in the synthesis of valuable chemicals by both the pharmaceutical and agrochemical industries."

Commenting on the findings, BBSRC Chief Executive Professor Doug Kell, said: "Green and White biotechnologies are going to be an increasingly important part of the manufacturing landscape. Looking to biological systems that have been finely tuned by evolution to solve problems, rather than starting from scratch every time, might seem an obvious thing to do. It does however, in many cases, require the bringing together of particular niche expertise. The value of this collaboration is in the coincidence of knowledge and expertise from academia with the uniquely important business of synthesising a product on a large scale.

"What the outcomes of this project will offer us is the chance to have a significant impact on the sustainability of pharmaceutical and biochemicals production as we move from oil-based to photosynthesis-derived chemistry."

The research is featured in the summer issue of the new look Business, the BBSRC research highlights magazine.

IMAGES AVAILABLE ON REQUEST

Contact

BBSRC Media Office
Tracey Jewitt, Tel: 01793 414694, email: tracey.jewitt@bbsrc.ac.uk
Nancy Mendoza, Tel: 01793 413355, email: nancy.mendoza@bbsrc.ac.uk
Matt Goode, Tel: 01793 413299, email: matt.goode@bbsrc.ac.uk
NOTES TO EDITORS
This research features in the new look Summer 2009 issue of Business, the research highlights magazine of the Biotechnology and Biological Sciences Research Council (BBSRC).

About BBSRC

The Biotechnology and Biological Sciences Research Council (BBSRC) is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £450 million in a wide range of research that makes a significant contribution to the quality of life for UK citizens and supports a number of important industrial stakeholders including the agriculture, food, chemical, healthcare and pharmaceutical sectors. BBSRC carries out its mission by funding internationally competitive research, providing training in the biosciences, fostering opportunities for knowledge transfer and innovation and promoting interaction with the public and other stakeholders on issues of scientific interest in universities, centres and institutes.

The Babraham Institute, Institute for Animal Health, Institute of Food Research, John Innes Centre and Rothamsted Research are Institutes of BBSRC. The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.

About Heriot-Watt

Heriot-Watt University has a special place as a leading institution in science, technology and business and excelling as Scotland's most international university. The University provides more graduates per year across the physical sciences, mathematics, engineering and in the built environment than any other Scottish university

About Plymouth Marine Laboratory

PML is an independent, impartial provider of scientific research, contract services and advice for the marine environment, with a focus on understanding how marine ecosystems function and reducing uncertainty about the complex processes and structures that sustain life in the seas and their role in the Earth system.

As one of the world's first truly multidisciplinary marine research centres, PML delivers highly innovative research and solutions for national and international marine and coastal programmes. The research at PML is timely and highly relevant to UK and international societal needs and its research, development and training programmes have at their core the mission to contribute to issues concerned with understanding global change and the health and sustainability of marine ecosystems.

Tracey Jewitt | EurekAlert!
Further information:
http://www.bbsrc.ac.uk
http://www.hw.ac.uk/home/
http://www.pml.ac.uk/

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>