Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maps of Miscanthus Genome offer insight into grass evolution

16.05.2012
Miscanthus grasses are used in gardens, burned for heat and energy, and converted into liquid fuels.

They also belong to a prominent grass family that includes corn, sorghum and sugarcane. Two new, independently produced chromosome maps of Miscanthus sinensis (an ornamental that likely is a parent of Miscanthus giganteus, a biofuels crop) are a first step toward sequencing the M. sinensis genome. The studies reveal how a new plant species with distinctive traits can arise as a result of chromosome duplications and fusions.

The two studies were published this year: The first, led by the energy crop company Ceres, appeared in the journal PLoS ONE; the second, from a team led by researchers at the University of Illinois, is in the journal BMC Genomics. The data, materials, methods and genetic markers used in the latter study are available to the public for further research.

Before this work, scientists knew that M. sinensis had a base set of 19 chromosomes and was closely related to sorghum, which has a base set of 10. (Humans have a base set of 23). But without a map and sequence of the Miscanthus genome, researchers who hope to maximize yields or discover which genes give Miscanthus its desirable traits are working in the dark, said Stephen Moose, a University of Illinois crop sciences professor and Energy Biosciences Institute program leader, who led the BMC Genomics study.

Moose and his colleagues used information gleaned from the sugarcane genome to develop hundreds of genetic markers to target specific regions of the M. sinensis genome. Then they crossed two M. sinensis plants and grew 221 offspring in a laboratory. By comparing how the genetic markers from each parent were sorted in the offspring, the team reconstructed 19 “linkage groups” corresponding to the 19 chromosomes of Miscanthus. This rough map of the chromosomes is a first step toward a Miscanthus genome, Moose said.

The researchers also used the sorghum genome as a comparative reference. Their analysis indicated that M. sinensis arose as a result of a duplication of the sorghum genome, with a later fusion of some chromosome parts.

“Some plants will duplicate their genomes and then there’s some sorting that goes on,” Moose said. “Sometimes whole chromosomes are lost and sometimes there are fusions.” Once there are two copies of each chromosome in a base set, each will proceed along its own evolutionary trajectory. “Often what will happen is even though there are two (versions of the same chromosome), one of them will start to deteriorate over time,” Moose said. “Some positions and some genes will win out over the others.”

Genome duplications may undermine the viability of a plant or give it an advantage. One immediate advantage of doubling, tripling or otherwise duplicating the genome is that it increases the size of the plant, or of certain plant parts, Moose said.

“Humans have selected for these traits,” he said. “Strawberries, for example, are octoploids; they have eight chromosome sets. Sugarcane has eight sets, and it’s bigger (than its wild cousins).”

Moose and his colleagues were surprised to find a high degree of similarity between the Miscanthus and sorghum genomes.

“I would say that for about 90 percent of the Miscanthus markers, their chromosomal order corresponds to what is known for sorghum,” he said.

The new findings and the eventual publication of the Miscanthus genome will help scientists understand the evolution of grasses and the genetic mechanisms that give them their desirable traits, Moose said.

The BMC Genomics team also included researchers from the University of California, Berkeley; the Polish Academy of Sciences; the department of plant biology at the U. of I.; the Department of Energy Joint Genome Institute; and the National Institute of Horticultural and Herbal Science, in South Korea. Moose is an affiliate of the Institute for Genomic Biology at Illinois.

The Energy Biosciences Institute supported this research.

Editor’s notes: To reach Stephen Moose, call 217-244-6308;
email smoose@illinois.edu.
The paper, “A Framework Genetic Map for Miscanthus sinensis From
RNAseq-based Markers Shows Recent Tetraploidy,” is vailable online
and from the U. of I. News Bureau

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>