Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping of cancer cell fuel pumps paves the way for new drugs

29.04.2013
For the first time, researchers at Karolinska Institutet in Sweden have managed to obtain detailed images of the way in which the transport protein GLUT transports sugars into cells.

Since tumours are highly dependent on the transportation of nutrients in order to be able to grow rapidly, the researchers are hoping that the study published in the scientific magazine Nature Structural & Molecular Biology will form the basis for new strategies to fight cancer cells.

In order to be able to fuel their rapid growth, cancer tumours depend on transporter proteins to work at high speed to introduce sugars and other nutrients that are required for the cell's metabolism. One possible treatment strategy would therefore be to block some of the transporters in the cell membrane which operate as fuel pumps, thus starving out and killing the cancer cells.

One important group of membrane transporters is the GLUT family, which introduces glucose and other sugars into the cell. Glucose is one of the most important energy sources for cancer cells and GLUT transporters have been shown to play a key role in tumour growth in many different types of cancer. In the current study, researchers from Karolinska Institutet have performed a detailed study of the way in which suger transport is executed by the protein XylE, from the Escherichia coli bacterium, whose function and structure is very similar to GLUT transporters in humans. For the first time, the researchers have described the way in which the protein's structure changes between two different conformations when it binds and transports a sugar molecule.

"In showing details of the molecular structure of the region that bind the sugar, our study opens up the opportunities to more efficiently develop new substances that may inhibit GLUT transporters", says Pär Nordlund at the Department of Medical Biochemistry and Biophysics, one of the researchers behind the study. "Information on the structure of the transport protein facilitates the development of better drugs in a shorter time. Such GLUT inhibitors could potentially be used to treat cancer in the future."

The study may be of significance not just to cancer research but also in the field of diabetes. GLUT plays a key role in diabetes since insulin works by activating the uptake of glucose from the blood by means of GLUT transporters in the cell membrane.

GLUT and the studied XylE transporter belong to the very large group of metabolite transporters called the Major Facilitator Superfamily (MFS), which is important in many diseases and for the uptake of medicines in cells.

"Many aspects concerning molecular mechanisms for the function of GLUT transporters are probably common to many members of the MFS family, which are involved in a broad spectrum of diseases in addition to cancer and diabetes," says Pär Nordlund.

As well as membrane transporters, which have undergone in-depth analysis in the current study, many different membrane proteins pass through the surface membrane of the cells. Their significance to the cell function and the development of drugs has been noted before, not least through the Nobel Prizes that were awarded to researchers who used mechanistic and structural studies to map the function of two other major membrane protein families, G-protein-coupled receptors and ion channels.

The current study has been financed by grants from the Swedish Research Council, the Swedish Cancer Society, the European Molecular Biology Organization (EMBO) and The Danish Council for Independent Research.

Publication: 'Structural basis for substrate transport in the GLUT homology family of monosaccharide transporters', Esben M. Quistgaard, Christian Löw, Per Moberg, Lionel Trésaugues, and Pär Nordlund, Nature Structural & Molecular Biology, online 28 April 2013, doi: 10.1038/nsmb.2569. EMBARGOED until Sunday 28 April 2013 at 18:00 UK time / 19:00 CET / 13:00 US ET.

Journal website: http://www.nature.com/nsmb

Contact the Press Office: ki.se/pressroom

Karolinska Institutet – a medical university: ki.se/english

Karolinska Institutet Press Office | EurekAlert!
Further information:
http://www.ki.se

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>