Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Map of substrate-kinase interactions may lead to more effective cancer drugs

28.03.2012
Later-stage cancers thrive by finding detours around roadblocks that cancer drugs put in their path, but a Purdue University biochemist is creating maps that will help drugmakers close more routes and develop better drugs.

Kinase enzymes deliver phosphates to cell proteins in a process called phosphorylation, switching a cellular function on or off. Irregularities in phosphorylation can lead to uncontrolled cell growth and are a hallmark of cancer.

Many successful cancer drugs are kinase inhibitors, which block the ability of a kinase to bind with a particular protein on the cell, stopping phosphorylation and the creation of cancer cells.

W. Andy Tao, a Purdue associate professor of biochemistry and member of the Purdue University Center for Cancer Research, said that in later stages of cancers, kinase-inhibiting drugs are ineffective because the kinases adapt, finding new protein targets and forming new cancer cells. He believes that creating maps of all the potential routes for cancer cell formation is a key to developing better cancer drugs.

"I would say that 99 percent of these drugs are effective for a few months in late-state cancers, and then the cancers develop resistance," said Tao, whose findings were published online early in the Proceedings of the National Academy of Sciences. "In the beginning, the cell cannot adjust and it dies. In later stages, the cells find a way. Cancer cells find a way to survive. You block one pathway, and they find another."

The kinase-protein maps Tao is creating identify kinases and the direct protein targets they phosphorylate. His method weeds out other proteins that are not direct targets, but are later phosphorylated as part of a cascade of reactions that begins when direct target proteins are phosphorylated.

Tao compared cells with and without kinases. The phosphoproteins present only when a kinase was present were considered possible targets. Further, the proteins were dephosphorylated, meaning the phosphate groups that had been added by kinases were removed.

The kinase was then re-introduced, and those proteins that accepted phosphate groups from the kinase were deemed direct targets of that kinase. With that information, drugmakers could tailor kinase-inhibiting drugs to ensure that the drug would stop kinases from reaching all potential targets, making the drugs more effective.

"If you understand the network, you can block all the pathways to cure the cancer," Tao said.
Tao's research findings focused on the SYK kinase, which is involved in leukemia and breast cancers. He plans to study other kinases, as well as mutated kinases, to understand whether they have different protein targets.

Tao collaborated with Robert Geahlen, a professor in medicinal chemistry and molecular pharmacology at Purdue. The National Institutes of Health funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Source: Andy Tao, 765-494-9605, taow@purdue.edu
Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>