Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating the microbiome could help manage weight

27.08.2012
Vaccines and antibiotics may someday join caloric restriction or bariatric surgery as a way to regulate weight gain, according to a new study focused on the interactions between diet, the bacteria that live in the bowel, and the immune system.

Bacteria in the intestine play a crucial role in digestion. They provide enzymes necessary for the uptake of many nutrients, synthesize certain vitamins and boost absorption of energy from food.

Fifty years ago, farmers learned that by tweaking the microbial mix in their livestock with low-dose oral antibiotics, they could accelerate weight gain. More recently, scientists found that mice raised in a germ-free environment, and thus lacking gut microbes, do not put on extra weight, even on a high-fat diet.

In a study, published Aug. 26 in the journal Nature Immunology, a research team based at the University of Chicago was able to unravel some of the mechanisms that regulate this weight gain. They focused on the relationship between the immune system, gut bacteria, digestion and obesity. They showed how weight gain requires not just caloric overload but also a delicate, adjustable — and transmissible — interplay between intestinal microbes and the immune response.

"Diet-induced obesity depends not just on calories ingested but also on the host's microbiome," said the study's senior author Yang-Xin Fu, MD, PhD, professor of pathology at the University of Chicago Medicine. For most people, he said, "host digestion is not completely efficient, but changes in the gut flora can raise or lower digestive efficiency."

So the old adage "you are what you eat" needs to be modified, Fu suggested, to include, "as processed by the microbial community of the distal gut and as regulated by the immune system."

To measure the effects of microbes and immunity, the researchers compared normal mice with mice that have a genetic defect that renders them unable to produce lymphotoxin, a molecule that helps to regulate interactions between the immune system and bacteria in the bowel. Mice lacking lymphotoxin, they found, do not gain extra weight, even after prolonged consumption of a high-fat diet.

On a standard diet, both groups of mice maintained a steady weight. But after nine weeks on a high-fat diet, the normal mice increased their weight by one-third, most of it fat. Mice lacking lymphotoxin ate just as much, but did not gain weight.

The high-fat diet triggered changes in gut microbes for both groups. The normal mice had a substantial increase in a class of bacteria (Erysopelotrichi) previously associated with obesity and related health problems. Mice that lacked lymphotoxin were unable to clear segmented filamentous bacteria, which has previously been found to induce certain immune responses in the gut.

The role of gut microbes was confirmed when the researchers transplanted bowel contents from the study mice to normal mice raised in a germ-free environment — and thus lacking their own microbiome. Mice who received commensal bacteria from donors that made lymphotoxin gained weight rapidly. Those that got the bacteria from mice lacking lymphotoxin gained much less weight for about three weeks, until their own intact immune system began to normalize their bacterial mix.

When housed together, the mice performed their own microbial transplants. Mice are coprophagic; they eat each other's droppings. In this way, the authors note, mice housed together "colonize one another with their own microbial communities." After weeks together, even mice with the immune defect began to gain weight. They also were able to reduce the presence of segmented filamentous bacteria in their stool.

Moving from normal chow to the high-fat diet initiated a series of related changes, the authors found. First, it altered the balance of microbes in the digestive system. These changes in the microbiome altered the immune response, which then introduced further changes to the intestinal microbial community.

These changes "provide inertia for the obese state," the authors said, facilitating more efficient use of scarce food resources.

"Our results suggest that it may be possible to learn how to regulate these microbes in ways that could help prevent diseases associated with obesity," said Vaibhav Upadhyay, first author of the study and an MD/PhD student working in Fu's laboratory. "We now think we could inhibit the negative side effects of obesity by regulating the microbiota and perhaps manipulating the immune response."

Or, 20 years from now, "when there are 10 billion people living on earth and competing for food, we may want to tilt digestive efficiency in the other direction," Fu added.

The authors cautioned, however, that with more than 500 different strains of bacteria present in the gut, "the precise microbes that promote such weight gain and the specific host responses that foster their growth need to be better established."

The National Institutes of Health and the American Heart Association supported this research. Additional authors include Valeriy Poroyko, Tai-jin Kim, Suzanne Devkota, Sherry Fu, Alexei Tumanov, Ekaterina Koroleva, Liufu Deng, Cathryn Nagler and Eugene Chang of the University of Chicago, and Hong Tang of the Chinese Academy of Sciences.

The manuscript is dedicated to the memory of co-author Donald Liu, MD, PhD, who died Aug. 5.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>