Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making your brain social: Failure to eliminate links between neurons produces autistic-like mice

03.02.2014
In many people with autism and other neurodevelopmental disorders, different parts of the brain don’t talk to each other very well.

Scientists have now identified, for the first time, a way in which this decreased functional connectivity can come about.

In a study published online today in Nature Neuroscience, scientists at the European Molecular Biology Laboratory (EMBL) in Monterotondo, Italy, and collaborators at the Istituto Italiano di Tecnologia (IIT), in Rovereto, and La Sapienza University in Rome, demonstrate that it can be caused by cells called microglia failing to trim connections between neurons.

“We show that a deficit in microglia during development can have widespread and long-lasting effects on brain wiring and behaviour,” says Cornelius Gross, who led the study. “It leads to weak brain connectivity, decreased social behaviour, and increased repetitive behaviour, all hallmarks of autism.”

The findings indicate that, by trimming surplus connections in the developing brain, microglia allow the remaining links to grow stronger, like high-speed fibre-optic cables carrying strong signals between brain regions. But if these cells fail to do their job at that crucial stage of development, those brain regions are left with a weaker communication network, which in turn has lifelong effects on behaviour.

Yang Zhan, a postdoctoral fellow in Gross’ lab at EMBL, analysed the strength of connections between different areas of brain in mice that were genetically engineered to have fewer microglia during development. Working with Alessandro Gozzi’s lab at IIT and Davide Ragozzino at La Sapienza University, the EMBL scientists combined this approach with high-resolution fMRI (functional Magnetic Resonance Imaging) scans of the mice’s brains, taking full advantage of a novel technique developed at IIT, which enables scientists to obtain detailed, three-dimensional maps of the brain’s functional connections.
The team found that mice with fewer microglia had weaker connections between neurons, and less cross-talk between different brain regions. When Rosa Paolicelli, a PhD student in Gross’ lab, studied the mice’s behaviour, she discovered that mice with fewer microglia and decreased connectivity displayed behaviours commonly associated with autism spectrum disorders. These mice spent more time repeatedly grooming themselves, and avoided social interactions.

“This is an exciting time to be studying microglia,” Gross concludes: “they’re turning out to be major players in how our brain gets wired up.”

To be published online in Nature Neuroscience on 2 February 2014. DOI: 10.1038/nn.364.

Policy regarding use

EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado Neves
EMBL Press Officer and Deputy Head of Communications
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>