Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Making your brain social: Failure to eliminate links between neurons produces autistic-like mice

In many people with autism and other neurodevelopmental disorders, different parts of the brain don’t talk to each other very well.

Scientists have now identified, for the first time, a way in which this decreased functional connectivity can come about.

In a study published online today in Nature Neuroscience, scientists at the European Molecular Biology Laboratory (EMBL) in Monterotondo, Italy, and collaborators at the Istituto Italiano di Tecnologia (IIT), in Rovereto, and La Sapienza University in Rome, demonstrate that it can be caused by cells called microglia failing to trim connections between neurons.

“We show that a deficit in microglia during development can have widespread and long-lasting effects on brain wiring and behaviour,” says Cornelius Gross, who led the study. “It leads to weak brain connectivity, decreased social behaviour, and increased repetitive behaviour, all hallmarks of autism.”

The findings indicate that, by trimming surplus connections in the developing brain, microglia allow the remaining links to grow stronger, like high-speed fibre-optic cables carrying strong signals between brain regions. But if these cells fail to do their job at that crucial stage of development, those brain regions are left with a weaker communication network, which in turn has lifelong effects on behaviour.

Yang Zhan, a postdoctoral fellow in Gross’ lab at EMBL, analysed the strength of connections between different areas of brain in mice that were genetically engineered to have fewer microglia during development. Working with Alessandro Gozzi’s lab at IIT and Davide Ragozzino at La Sapienza University, the EMBL scientists combined this approach with high-resolution fMRI (functional Magnetic Resonance Imaging) scans of the mice’s brains, taking full advantage of a novel technique developed at IIT, which enables scientists to obtain detailed, three-dimensional maps of the brain’s functional connections.
The team found that mice with fewer microglia had weaker connections between neurons, and less cross-talk between different brain regions. When Rosa Paolicelli, a PhD student in Gross’ lab, studied the mice’s behaviour, she discovered that mice with fewer microglia and decreased connectivity displayed behaviours commonly associated with autism spectrum disorders. These mice spent more time repeatedly grooming themselves, and avoided social interactions.

“This is an exciting time to be studying microglia,” Gross concludes: “they’re turning out to be major players in how our brain gets wired up.”

To be published online in Nature Neuroscience on 2 February 2014. DOI: 10.1038/nn.364.

Policy regarding use

EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado Neves
EMBL Press Officer and Deputy Head of Communications
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525

Sonia Furtado Neves | EMBL Research News
Further information:

More articles from Life Sciences:

nachricht Atom-Sized Craters Make a Catalyst Much More Active
30.11.2015 | SLAC National Accelerator Laboratory

nachricht Hydra Can Modify Its Genetic Program
30.11.2015 | Université de Genève (University of Geneva)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

Teamplay IT solution enables more efficient use of protocols

30.11.2015 | Trade Fair News

Greater efficiency and potentially reduced costs with new MRI applications

30.11.2015 | Trade Fair News

Modular syngo.plaza as a comprehensive solution – even for enterprise radiology

30.11.2015 | Trade Fair News

More VideoLinks >>>