Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What makes us unique? Not only our genes

18.03.2010
What counts is how genes are regulated, say scientists at EMBL and Yale

Once the human genome was sequenced in 2001, the hunt was on for the genes that make each of us unique. But scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and Yale and Stanford Universities in the USA, have found that we differ from each other mainly because of differences not in our genes, but in how they’re regulated – turned on or off, for instance.

In a study published today in Science, they are the first to compare entire human genomes and determine which changes in the stretches of DNA that lie between genes make gene regulation vary from one person to the next. Their findings hail a new way of thinking about ourselves and our diseases.

The technological advances of the past decade have been so great that scientists can now obtain the genetic sequences – or genomes – of several people in a fraction of the time and for a fraction of the cost it took to determine that first human genome. Moreover, these advances now enable researchers to understand how genes are regulated in humans.

A group of scientists led by Jan Korbel at EMBL and Michael Snyder initially at Yale and now in Stanford were the first to compare individually sequenced human genomes to look for what caused differences in gene regulation amongst ten different people. They focused on non-coding regions – stretches of DNA that lie between genes and, unlike genes, don’t hold the instructions for producing proteins. These DNA sequences, which may vary from person to person, can act as anchors to which regulatory proteins, known as transcription factors, attach themselves to switch genes on or off.

Korbel, Snyder, and colleagues found that up to a quarter of all human genes are regulated differently in different people, more than there are genetic variations in genes themselves. The scientists found that many of these differences in how regulatory proteins act are due to changes in the DNA sequences they bind to. In some cases, such changes can be a difference in a single letter of the genetic code, while in others a large section of DNA may be altered. But surprisingly, they discovered even more variations could not be so easily explained. They reasoned that some of these seemingly inexplicable differences might arise if regulatory proteins didn’t act alone, but interacted with each other.

“We developed a new approach which enabled us to identify cases where a protein’s ability to turn a gene on or off can be affected by interactions with another protein anchored to a nearby area of the genome,” Korbel explains. “With it, we can begin to understand where such interactions happen, without having to study every single regulatory protein out there.”

The scientists found that even if different people have identical copies of a gene – for instance ORMDL3, a gene known to be involved in asthma in children – the way their cells regulate that gene can vary from person to person.

“Our findings may help change the way we think of ourselves, and of diseases”, Snyder concludes: “as well as looking for disease genes, we could start looking at how genes are regulated, and how individual variations in gene regulation could affect patients’ reactions.”

Finally, Korbel, Snyder and colleagues compared the information on humans with that from a chimpanzee, and found that with respect to gene regulation there seems to be almost as much variation between humans as between us and our primate cousins – a small margin in which may lie important clues both to how we evolved and to what makes us humans different from one another.

In a study published online in Nature yesterday, researchers led by Snyder in the USA and Lars Steinmetz at EMBL in Heidelberg have found that similar differences in gene regulation also occur in an organism which is much farther from us in the evolutionary tree: baker’s yeast.

Policy regarding use

EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado | EMBL
Further information:
http://www.embl.org
http://www.embl.de/aboutus/communication_outreach/media_relations/2010/100318_Heidelberg/index.html

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>