Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Makes Stem Cells Tick?

07.08.2009
Investigators at the Burnham Institute for Medical Research (Burnham) and The Scripps Research Institute (TSRI) have made the first comparative, large-scale phosphoproteomic analysis of human embryonic stem cells (hESCs) and their differentiated derivatives.

The data may help stem cell researchers understand the mechanisms that determine whether stem cells divide or differentiate, what types of cells they become and how to control those complex mechanisms to facilitate development of new therapies. The study was published in the August 6 issue of the journal Cell Stem Cell.

Protein phosphorylation, the biochemical process that modifies protein activities by adding a phosphate molecule, is central to cell signaling. Using sophisticated phosphoproteomic analyses, the team of Sheng Ding, Ph.D., associate professor at TSRI, Evan Y. Snyder, M.D., Ph.D., professor and director of Burnham’s Stem Cell and Regenerative Biology program, and Laurence M. Brill, Ph.D., senior scientist at Burnham’s Proteomics Facility, catalogued 2,546 phosphorylation sites on 1,602 phosphoproteins. Prior to this research, protein phosphorylation in hESCs was poorly understood. Identification of these phosphorylation sites provides insights into known and novel hESC signaling pathways and highlights signaling mechanisms that influence self-renewal and differentiation.

“This research will be a big boost for stem cell scientists,” said Dr. Brill. “The protein phosphorylation sites identified in this study are freely available to the broader research community, and researchers can use these data to study the cells in greater depth and determine how phosphorylation events determine a cell’s fate.”

The team performed large-scale, phosphoproteomic analyses of hESCs and their differentiated derivatives using multi-dimensional liquid chromatography and tandem mass spectrometry. The researchers then used the phosphoproteomic data as a predictive tool to target a sample of the signaling pathways that were revealed by the phosphorylated proteins in hESCs, with follow-up experiments to confirm the relevance of these phosphoproteins and pathways to the cells. The study showed that many transcription regulators such as epigenetic and transcription factors, as well as a large number of kinases are phosphorylated in hESCs, suggesting that these proteins may play a key role in determining stem cell fate. Proteins in the JNK signaling pathway were also found to be phosphorylated in undifferentiated hESCs, which suggested that inhibition of JNK signaling may lead to differentiation, a result that was confirmed in hESC cultures.

These methods were extremely useful to discover novel proteins relevant to the human embryonic stem cells. For example, the team found that phosphoproteins in receptor tyrosine kinase (RTK) signaling pathways were numerous in undifferentiated hESCs. Follow-up studies used this unexpected finding to show that multiple RTKs can support hESCs in their undifferentiated state.

This research shows that phosphoproteomic data can be a powerful tool to broaden understanding of hESCs and how their ultimate fate is determined. With this knowledge, stem cell researchers may be able to develop more focused methods to control hESC differentiation and move closer to clinical therapies.

The protein phosphorylation data is available on the Cell Stem Cell website, as well as on the PRIDE website, www.ebi.ac.uk/pride.

About Burnham Institute for Medical Research
Burnham Institute for Medical Research is dedicated to revealing the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The Institute ranks among the top-four institutions nationally for NIH grant funding and among the top-25 organizations worldwide for its research impact. Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, infectious and inflammatory and childhood diseases. The Institute is known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit, public benefit corporation. For more information, please visit www.burnham.org.
About The Scripps Research Institute
The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Josh Baxt | Newswise Science News
Further information:
http://www.burnham.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>