Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What makes fructose fattening? OHSU researchers find some answers in the brain

10.02.2011
The dietary concerns of too much fructose is well documented. High-fructose corn syrup has become the sweetener most commonly added to processed foods.

Many dietary experts believe this increase directly correlates to the nation's growing obesity epidemic. Now, new research at Oregon Health & Science University demonstrates that the brain – which serves as a master control for body weight – reacts differently to fructose compared with another common sweetener, glucose. The research is published in the online edition of the journal Diabetes, Obesity and Metabolism and will appear in the March print edition.

"We know from animal models that the brain responds uniquely to different nutrients and that these responses can determine how much they eat," said Jonathan Purnell, M.D., an associate professor of medicine (endocrinology, diabetes and clinical nutrition) in the OHSU School of Medicine.

"With newer technologies such as functional MRI, we can examine how brain activity in humans reacts when exposed to, say, carbohydrates or fats. What we've found in this case is that the brain's response to fructose is very different to the response to glucose, which is less likely to promote weight gain."

Functional MRI allows researchers to watch brain activity in real time. To conduct the research, nine normal-weight human study subjects were imaged as they received an infusion of fructose, glucose or a saline solution. When the resulting brain scans from these three groups were compared, the scientists observed distinct differences.

Brain activity in the hypothalamus, one brain area involved in regulating food intake, was not affected by either fructose or glucose. However, activity in the cortical brain control areas showed the opposite response during infusions of the sugars. Activity in these areas was inhibited when fructose was given but activated during glucose infusion.

This is an important finding because these control brain areas included sites that are thought to be important in determining how we respond to food taste, smells, and pictures, which the American public is bombarded with daily.

"This study provides evidence in humans that fructose and glucose elicits opposite responses in the brain. It supports the animal research that shows similar findings and links fructose with obesity," added Purnell.

"For consumers, our findings support current recommendations that people be conscious of sweeteners added to their drinks and meals and not overindulge on high-fructose, processed foods."

The OHSU Advanced Imaging Research Center, the Oregon Clinical and Translational Research Institute at OHSU, the NIH Roadmap for Medical Research, the USDA-ARS Project, the Diabetes Action Research and Education Foundation, and the National Center for Research Resources, a component of the National Institutes of Health, funded this research.

About OHSU

Oregon Health & Science University is the state's only health and research university, and only academic health center. As Portland's largest employer and the fourth largest in Oregon (excluding government), OHSU's size contributes to its ability to provide many services and community support activities not found anywhere else in the state. It serves more than 184,000 patients, and is a conduit for learning for more than 3,900 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to each county in the state.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>