Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to make stem cells – nuclear reprogramming moves a step forward

29.10.2012
The idea of taking a mature cell and removing its identity (nuclear reprogramming) so that it can then become any kind of cell, holds great promise for repairing damaged tissue or replacing bone marrow after chemotherapy.

Hot on the heels of his recent Nobel prize Dr John B. Gurdon has published today in BioMed Central's open access journal Epigenetics & Chromatin research showing that histone H3.3 deposited by the histone-interacting protein HIRA is a key step in reverting nuclei to a pluripotent type, capable of being any one of many cell types.

All of an individual's cells have the same DNA, yet these cells become programmed, as the organism matures, into different types such as heart, or lung or brain. To achieve this different genes are more or less permanently switched off in each cell lineage. As an embryo grows, after a certain number of divisions, it is no longer possible for cells which have gone down the pathway to become something else. For example heart cells cannot be converted into lung tissue, and muscle cells cannot form bone.

One way to reprogram DNA is to transfer the nucleus of a mature cell into an unfertilized egg. Proteins and other factors inside the egg alter the DNA switching some genes on and other off until it resembles the DNA of a pluripotent cell. However there seem to be some difficulties with this method in completely wiping the cell's 'memory'.

One of the mechanisms regulating the activation of genes is chromatin and in particular histones. DNA is wrapped around histones and alteration in how the DNA is wound changes which genes are available to the cell. In order to understand how nuclear reprogramming works Dr Gurdon's team transplanted a mouse nucleus into a frog oocyte (Xenopus laevis). They added fluorescently tagged histones by microinjection, so that they could see where in the cell and nucleus the these histones collected.

Prof Gurdon explained, "Using real-time microscopy it became apparent that from 10 hours onwards H3.3 (the histone involved with active genes) expressed in the oocyte became incorporated into the transplanted nucleus. When we looked in detail at the gene Oct4, which is known to be involved in making cells pluripotent, we found that H3.3 was incorporated into Oct4, and that this coincided with the onset of transcription from the gene." Prof Gurdon's team also found that Hira, a protein required to incorporate H3.3 into chromatin, was also required for nuclear reprogramming.

Dr Steven Henikoff, from the Fred Hutchinson Cancer Research Center, commented, "Manipulating the H3.3 pathway may provide a way to completely wipe a cell's 'memory' and produce a truly pluripotent cell. Half a century after showing that cells can be reprogrammed this research provides a link to the work of Shinya Yamanaka (who shared the prize), and suggests that chromatin is a sticking point preventing artificially induced reprogramming being used routinely in the clinic."

Media contact

Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Mob: +44 (0) 778 698 1967
Email: hilary.glover@biomedcentral.com
Notes
1. HIRA dependent H3.3 deposition is required for transcriptional reprogramming following nuclear transfer to Xenopus oocytes jerome jullien, carolina astrand, emmanuelle szenker, nigel garrett, genevieve almouzni and john gurdon Epigenetics & Chromatin (in press)
Chromatin roadblocks to reprogramming 50 years on
Peter J Skene and Steven Henikoff
BMC Biology (in press)
Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. Epigenetics & Chromatin is a peer-reviewed, open access, online journal, which publishes articles that provide novel insights into epigenetic inheritance and chromatin-based interactions. @EpigenChromatin

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector. @BioMedCentral

Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

Further reports about: BioMed Chromatin DNA Epigenetics HIRA STM Xenopus Laevis tadpoles cell type

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>