Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major advances in understanding the regulation and organization of the human genome

06.09.2012
Journal of Biological Chemistry releases series of articles about ENCODE results

The National Human Genome Research Institute today announced the results of a five-year international study of the regulation and organization of the human genome. The project is named ENCODE, which stands for the Encyclopedia of DNA Elements. In conjunction with the release of those results, the Journal of Biological Chemistry has published a series of reviews that focus on several aspects of the findings.

"The ENCODE project not only generated an enormous body of data about our genome, but it also analyzed many issues to better understand how the genome functions in different types of cells. These insights from integrative analyses are really stories about how molecular machines interact with each other and work on DNA to produce the proteins and RNAs needed for each cell to function within our bodies," explains Ross Hardison of Pennsylvania State University, one of the JBC authors.

Hardison continued: "The Journal of Biological Chemistry recognized that the results from the ENCODE project also would catalyze much new research from biochemists and molecular biologists around the world. Hence, the journal commissioned these articles not only to communicate the insights from the papers now being published but also to stimulate more research in the broader community."

The human genome consists of about 3 billion DNA base pairs, but only a small percentage of DNA actually codes for proteins. The roles and functions of the remaining genetic information were unclear to scientists and even referred to as "junk DNA." But the results of the ENCODE project is filling this knowledge gap. The findings revealed that more than 80 percent of the human genome is associated with biological function.

The study showed in a comprehensive way that proteins switch genes on and off regularly – and can do so at distances far from the genes they regulate – and it determined sites on chromosomes that interact, the locations where chemical modifications to DNA can influence gene expression, and how the functional forms of RNA can regulate the expression of genetic information.

The results establish the ways in which genetic information is controlled and expressed in specific cell types and distinguish particular regulatory regions that may contribute to diseases.

"The deeper knowledge of gene regulation coming from the ENCODE project will have a positive impact on medical science," Hardison emphasizes. For example, recent genetic studies have revealed many genomic locations that can affect a person's susceptibility to common diseases. The ENCODE data show that many of these regions are involved in gene regulation, and the data provide hypotheses for how variations in these regions can affect disease susceptibility, adds Hardison.

The effort behind the ENCODE project was extraordinary. More than 440 scientists in 32 labs in United States, the United Kingdom, Spain, Singapore and Japan performed more than 1,600 sets of experiments on 147 types of tissue. The results were published today in one main integrative paper and five other papers in the journal Nature, 18 papers in Genome Research and six papers in Genome Biology.

The JBC thematic review series was organized by Peggy J. Farnham of the University of Southern California. Farnham is also an author on the main integrative paper in Nature, as were seven other JBC authors, including Hardison, Vishwanath R. Iyer, Bum-Kyu Lee, Raymond K. Auerbach, Ghia Euskirchen, Victor X. Jin and Michael Snyder.

View and download the JBC reviews at https://www.dropbox.com/sh/047x6l5w54t9byi/zP3abN_7Oc?m.

Visit the ENCODE project portal, www.encodeproject.org, for more information.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit www.asbmb.org.

Press release written by Danielle Gutierrez.

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>