Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maintaining immune balance involves an unconventional mechanism of T cell regulation

04.07.2013
St. Jude Children's Research Hospital study challenges prior understanding of the process regulating specialized T cells that are essential for a balanced immune system

New findings from St. Jude Children's Research Hospital reveal an unconventional control mechanism involved in the production of specialized T cells that play a critical role in maintaining immune system balance. The research appears in the current online edition of the scientific journal Nature.

The work focused on white blood cells known as regulatory T cells. These cells are crucial for a balanced immune response. Regulatory T cells suppress other immune system components in order to protect healthy tissue from misguided immune attacks or to prevent runaway inflammation.

St. Jude researchers showed that a molecular complex called mTORC1 uses an unconventional process to serve as a rheostat, controlling the supply and function of regulatory T cells. Loss of mTORC1 activity impairs the regulatory T cells that suppress the immune system's inflammatory response. The mTORC1 complex is part of the mTOR pathway, which was thought to inhibit rather than promote the number and function of regulatory T cells.

"These results challenge the prior view of the mTOR pathway as an inhibitor of these key immune cells and highlight the role of the mTORC1 complex in regulating the T cells that are vital for controlling inflammation," said Hongbo Chi, Ph.D., an associate member of the St. Jude Department of Immunology and the paper's corresponding author.

The findings also identified the mechanism mTORC1 uses in programming regulatory T cells to function as immune suppressors. Chi said the results should aid efforts to develop new drugs for use in organ transplantation or for treatment of autoimmune disorders.

For this study, researchers used specially bred mice to explore the mTOR pathway's role in the function of regulatory T cells. Investigators demonstrated mTORC1's importance by selectively deleting genes that carry instructions for making key elements of mTORC1 and a related complex. The deletion that targeted mTORC1 resulted in dramatically reduced immune suppression by regulatory T cells and the mice rapidly developed a fatal inflammatory disorder.

Researchers also showed that mTORC1 works by integrating signals from two immune receptors on the cell surface with cholesterol metabolism. With the right input, mTORC1 promoted production of regulatory T cells and cemented their role as suppressors of immune activity.

In another twist, investigators linked that suppressive function to cholesterol and lipid metabolism. Rather than relying on more conventional strategies of immune regulation, researchers showed how regulatory T cells depend on the metabolic pathway to control production of molecules CTLA4 and ICOS, which are responsible for immune suppression. Production of CTLA4 and ICOS by regulatory T cells decreased as lipid metabolism dropped. "We are just starting to appreciate the importance of lipids in the immune system, particularly in the function of regulatory T cells," Chi said.

Hu Zeng of St. Jude is the study's first author. The others are Kai Yang, Caryn Cloer, Geoffrey Neale and Peter Vogel, all of St. Jude.

The research was supported in part by grants (AR053573, AI094089, AI101407 and NS064599) from the National Institutes of Health, the Lupus Research Institute and ALSAC.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>