Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maintaining immune balance involves an unconventional mechanism of T cell regulation

04.07.2013
St. Jude Children's Research Hospital study challenges prior understanding of the process regulating specialized T cells that are essential for a balanced immune system

New findings from St. Jude Children's Research Hospital reveal an unconventional control mechanism involved in the production of specialized T cells that play a critical role in maintaining immune system balance. The research appears in the current online edition of the scientific journal Nature.

The work focused on white blood cells known as regulatory T cells. These cells are crucial for a balanced immune response. Regulatory T cells suppress other immune system components in order to protect healthy tissue from misguided immune attacks or to prevent runaway inflammation.

St. Jude researchers showed that a molecular complex called mTORC1 uses an unconventional process to serve as a rheostat, controlling the supply and function of regulatory T cells. Loss of mTORC1 activity impairs the regulatory T cells that suppress the immune system's inflammatory response. The mTORC1 complex is part of the mTOR pathway, which was thought to inhibit rather than promote the number and function of regulatory T cells.

"These results challenge the prior view of the mTOR pathway as an inhibitor of these key immune cells and highlight the role of the mTORC1 complex in regulating the T cells that are vital for controlling inflammation," said Hongbo Chi, Ph.D., an associate member of the St. Jude Department of Immunology and the paper's corresponding author.

The findings also identified the mechanism mTORC1 uses in programming regulatory T cells to function as immune suppressors. Chi said the results should aid efforts to develop new drugs for use in organ transplantation or for treatment of autoimmune disorders.

For this study, researchers used specially bred mice to explore the mTOR pathway's role in the function of regulatory T cells. Investigators demonstrated mTORC1's importance by selectively deleting genes that carry instructions for making key elements of mTORC1 and a related complex. The deletion that targeted mTORC1 resulted in dramatically reduced immune suppression by regulatory T cells and the mice rapidly developed a fatal inflammatory disorder.

Researchers also showed that mTORC1 works by integrating signals from two immune receptors on the cell surface with cholesterol metabolism. With the right input, mTORC1 promoted production of regulatory T cells and cemented their role as suppressors of immune activity.

In another twist, investigators linked that suppressive function to cholesterol and lipid metabolism. Rather than relying on more conventional strategies of immune regulation, researchers showed how regulatory T cells depend on the metabolic pathway to control production of molecules CTLA4 and ICOS, which are responsible for immune suppression. Production of CTLA4 and ICOS by regulatory T cells decreased as lipid metabolism dropped. "We are just starting to appreciate the importance of lipids in the immune system, particularly in the function of regulatory T cells," Chi said.

Hu Zeng of St. Jude is the study's first author. The others are Kai Yang, Caryn Cloer, Geoffrey Neale and Peter Vogel, all of St. Jude.

The research was supported in part by grants (AR053573, AI094089, AI101407 and NS064599) from the National Institutes of Health, the Lupus Research Institute and ALSAC.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>