Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetizing Diagnostics

16.07.2012
Magnetic Gram staining detects bacteria

Gram staining of bacteria is a routine diagnostic method of long standing that can be used for initial diagnoses and to simplify the choice of antibiotics. It is a simple way to classify bacteria into two classes—Gram-positive and Gram-negative—under a microscope. In the journal Angewandte Chemie, American researchers have now introduced an improvement to this method: magnetic Gram staining. This allows for the class-specific, automated, magnetic detection and separation of bacteria.

Gram staining was developed about a hundred years ago by Danish bacteriologist Hans Christian Gram. In this technique, bacterial cultures are colored by a stain known as crystal violet, which enters into the murein layer of the bacterial cell walls. Treatment with an iodine-containing solution forms water-insoluble complexes between the crystal violet and iodine.

There are two classes of bacteria that differ in the structures of their cell walls. A thick murein layer surrounds one class; the others have only a thin one. Whereas subsequent treatment with ethanol dissolves the stain complex out of the thin murein layer, it remains firmly lodged in the thick murein layers. Bacteria whose stain can be washed away in this manner are classified as Gram-negative; those that remain dark purple are Gram-positive.

Scientists working with Ralph Weissleder at Harvard University in Boston (USA) have now developed Gram staining into a magnetic diagnostic technique. To achieve this, they attached a “molecular hook” to the molecules of crystal violet. With this modified dye, the staining process works just as it does with the original. After staining, however, “eyes” that correspond to the “hooks” are used to attach magnetic nanoparticles to the stain. This makes it easy to quantify the bacteria: nuclear magnetic resonance (NMR) instruments detect the magnetization of the nanoparticles.

It is possible to take an NMR measurement before washing with ethanol to obtain the total number of Gram-positive and Gram-negative bacteria, and again after the washing step to determine the concentration of Gram-positive bacteria.

The advantage of this magnetic detection method is its high sensitivity. It is possible that samples could be directly magnetized and measured without prior purification or culture of the bacteria. By using the simple but sensitive miniaturized micro-NMR instruments developed by this research group, fast and sensitive on-the-spot diagnosis is conceivable. In addition, the magnetization could be used for the separation of bacteria from the sample.

About the Author
Dr. Weissleder is a Professor at Harvard Medical School, Director of the Center for Systems Biology at Massachusetts General Hospital (MGH), and Attending Clinician at MGH. His research interests include the development of novel molecular imaging techniques, tools for detection of early disease detection, development of nanomaterials for sensing and systems analysis. He is a member of the US National Academies Institute of Medicine.
Author: Ralph Weissleder, Massachusetts General Hospital, Boston (USA), https://csb.mgh.harvard.edu/weissleder/pi_bio
Title: A Magnetic Gram Stain for Bacterial Detection
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201202982

Ralph Weissleder | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>