Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetizing Diagnostics

16.07.2012
Magnetic Gram staining detects bacteria

Gram staining of bacteria is a routine diagnostic method of long standing that can be used for initial diagnoses and to simplify the choice of antibiotics. It is a simple way to classify bacteria into two classes—Gram-positive and Gram-negative—under a microscope. In the journal Angewandte Chemie, American researchers have now introduced an improvement to this method: magnetic Gram staining. This allows for the class-specific, automated, magnetic detection and separation of bacteria.

Gram staining was developed about a hundred years ago by Danish bacteriologist Hans Christian Gram. In this technique, bacterial cultures are colored by a stain known as crystal violet, which enters into the murein layer of the bacterial cell walls. Treatment with an iodine-containing solution forms water-insoluble complexes between the crystal violet and iodine.

There are two classes of bacteria that differ in the structures of their cell walls. A thick murein layer surrounds one class; the others have only a thin one. Whereas subsequent treatment with ethanol dissolves the stain complex out of the thin murein layer, it remains firmly lodged in the thick murein layers. Bacteria whose stain can be washed away in this manner are classified as Gram-negative; those that remain dark purple are Gram-positive.

Scientists working with Ralph Weissleder at Harvard University in Boston (USA) have now developed Gram staining into a magnetic diagnostic technique. To achieve this, they attached a “molecular hook” to the molecules of crystal violet. With this modified dye, the staining process works just as it does with the original. After staining, however, “eyes” that correspond to the “hooks” are used to attach magnetic nanoparticles to the stain. This makes it easy to quantify the bacteria: nuclear magnetic resonance (NMR) instruments detect the magnetization of the nanoparticles.

It is possible to take an NMR measurement before washing with ethanol to obtain the total number of Gram-positive and Gram-negative bacteria, and again after the washing step to determine the concentration of Gram-positive bacteria.

The advantage of this magnetic detection method is its high sensitivity. It is possible that samples could be directly magnetized and measured without prior purification or culture of the bacteria. By using the simple but sensitive miniaturized micro-NMR instruments developed by this research group, fast and sensitive on-the-spot diagnosis is conceivable. In addition, the magnetization could be used for the separation of bacteria from the sample.

About the Author
Dr. Weissleder is a Professor at Harvard Medical School, Director of the Center for Systems Biology at Massachusetts General Hospital (MGH), and Attending Clinician at MGH. His research interests include the development of novel molecular imaging techniques, tools for detection of early disease detection, development of nanomaterials for sensing and systems analysis. He is a member of the US National Academies Institute of Medicine.
Author: Ralph Weissleder, Massachusetts General Hospital, Boston (USA), https://csb.mgh.harvard.edu/weissleder/pi_bio
Title: A Magnetic Gram Stain for Bacterial Detection
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201202982

Ralph Weissleder | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>