Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnesium treatment for genetic coagulation disorder

29.03.2016

New, cost-effective therapy on the horizon. Magnesium improved blood clotting in case of a genetic defect of platelet development. An international team of scientists was able to demonstrate in mouse and patient studies, how magnesium affects the production of blood platelets and that the TRPM7 channel function plays a key role in this process. Scientists of the Rudolf Virchow Center and the Hospital of the University of Würzburg were primarily involved in this study. Their results were published in the current journal "Nature Communications".

A low platelet count (thrombocytopenia) prevents wound healing. People with a coagulation disorder can lose too much blood during otherwise harmless gum bleeding or other injuries.


Healthy platelets have an organized actin cytoskeleton (red), surrounded by microtubules (green). In Patients with TRPM7 channel defect, it's damaged, but can be restored with magnesium.

Research Group Nieswandt


Microscope image of megakaryocytes (top right) in the process of platelet formation. The spherical swellings represent immature platelets. The DNA in the nucleus is dyed blue.

Research Group Nieswandt

Platelets (thrombocytes) are created in the bone marrow continuously from megakaryocytes. The molecular biological regulation of this cytoskeletal-controlled process has not been completely analyzed yet.

In this publication, researchers provided for the first time several independent lines of evidence that TRPM7 (Transient receptor potential melastatin-like 7) regulates the balance of magnesium in megakaryocytes. Magnesium itself is involved in many metabolic processes and therefore essential for the body.

Researchers manipulated the channel function of TRPM7 in megakaryocytes of mice and observed severe damages in the structure of platelets, the so-called cytoskeleton. Consequently platelets were inoperative. Patient samples where a TRPM7 channel dysfunction has been then identified, had a low concentration of magnesium (Mg2+) in their platelets.

The platelets showed an unusual size and shape, an abnormal structure and excessive vacuoles. Interestingly, the supplementation of magnesium to the platelets of mice or patients restored this defect completely in the test tube.

The study indicates that special attention should be paid on the number and size of platelets during the diagnosis of an imbalanced magnesium condition, as a platelet deficiency may be present. "If there is a genetic defect of TRPM7, administration of magnesium could be used as a relatively safe therapeutic intervention," hopes the leader of the study, Dr. Attila Braun.

The treatment would be cost effective and would have relatively few side effects. Further studies in animal models and patients (with altered TRPM7 channel function) have been initiated, in order to evaluate the efficacy and safety of magnesium as a therapeutic for this disease.

Researchers were particularly pleased about the direct correlation of mouse and patient data. "This was a huge advancement for the project", says Prof. Bernhard Nieswandt, who managed the project together with Dr. Attila Braun.

Platelets are small cellular components in the blood. They play an important role in coagulation. In case of an injury, they seal the vascular wall temporarily. If this function is impaired due to damaged platelets, immoderate bleeding may occur.

Weitere Informationen:

http://www.rudolf-virchow-zentrum.de/en/news/news/article/neue-kostenguenstige-t...

Dr. Daniela Diefenbacher | idw - Informationsdienst Wissenschaft

Further reports about: Biomedizin Magnesium bone marrow coagulation platelet wound healing

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>