Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnesium treatment for genetic coagulation disorder

29.03.2016

New, cost-effective therapy on the horizon. Magnesium improved blood clotting in case of a genetic defect of platelet development. An international team of scientists was able to demonstrate in mouse and patient studies, how magnesium affects the production of blood platelets and that the TRPM7 channel function plays a key role in this process. Scientists of the Rudolf Virchow Center and the Hospital of the University of Würzburg were primarily involved in this study. Their results were published in the current journal "Nature Communications".

A low platelet count (thrombocytopenia) prevents wound healing. People with a coagulation disorder can lose too much blood during otherwise harmless gum bleeding or other injuries.


Healthy platelets have an organized actin cytoskeleton (red), surrounded by microtubules (green). In Patients with TRPM7 channel defect, it's damaged, but can be restored with magnesium.

Research Group Nieswandt


Microscope image of megakaryocytes (top right) in the process of platelet formation. The spherical swellings represent immature platelets. The DNA in the nucleus is dyed blue.

Research Group Nieswandt

Platelets (thrombocytes) are created in the bone marrow continuously from megakaryocytes. The molecular biological regulation of this cytoskeletal-controlled process has not been completely analyzed yet.

In this publication, researchers provided for the first time several independent lines of evidence that TRPM7 (Transient receptor potential melastatin-like 7) regulates the balance of magnesium in megakaryocytes. Magnesium itself is involved in many metabolic processes and therefore essential for the body.

Researchers manipulated the channel function of TRPM7 in megakaryocytes of mice and observed severe damages in the structure of platelets, the so-called cytoskeleton. Consequently platelets were inoperative. Patient samples where a TRPM7 channel dysfunction has been then identified, had a low concentration of magnesium (Mg2+) in their platelets.

The platelets showed an unusual size and shape, an abnormal structure and excessive vacuoles. Interestingly, the supplementation of magnesium to the platelets of mice or patients restored this defect completely in the test tube.

The study indicates that special attention should be paid on the number and size of platelets during the diagnosis of an imbalanced magnesium condition, as a platelet deficiency may be present. "If there is a genetic defect of TRPM7, administration of magnesium could be used as a relatively safe therapeutic intervention," hopes the leader of the study, Dr. Attila Braun.

The treatment would be cost effective and would have relatively few side effects. Further studies in animal models and patients (with altered TRPM7 channel function) have been initiated, in order to evaluate the efficacy and safety of magnesium as a therapeutic for this disease.

Researchers were particularly pleased about the direct correlation of mouse and patient data. "This was a huge advancement for the project", says Prof. Bernhard Nieswandt, who managed the project together with Dr. Attila Braun.

Platelets are small cellular components in the blood. They play an important role in coagulation. In case of an injury, they seal the vascular wall temporarily. If this function is impaired due to damaged platelets, immoderate bleeding may occur.

Weitere Informationen:

http://www.rudolf-virchow-zentrum.de/en/news/news/article/neue-kostenguenstige-t...

Dr. Daniela Diefenbacher | idw - Informationsdienst Wissenschaft

Further reports about: Biomedizin Magnesium bone marrow coagulation platelet wound healing

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>