Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSU biologist James Caprio, Japanese colleagues identify unique way catfish locate prey

06.06.2014

Research findings to be published in June 6 issue of Science

Animals incorporate a number of unique methods for detecting prey, but for the Japanese sea catfish, Plotosus japonicus, it is especially tricky given the dark murky waters where it resides.

John Caprio, George C. Kent Professor of Biological Sciences at LSU, and colleagues from Kagoshima University in Japan have identified that these fish are equipped with sensors that can locate prey by detecting slight changes in the water's pH level.

A paper, "Marine teleost locates live prey through pH sensing," detailing the work of Caprio and his research partners, will be published in the journal Science on Friday, June 6. This is the first report of any fish using pH to find live prey.

... more about:
»LSU »catfish »detecting »dioxide »experiments »nerve fibers »tubes

"What makes this so interesting is that the discovery was unexpected, quite serendipitous," Caprio said.

The study was an offshoot of work initiated in 1984 when Caprio, a specialist in aquatic vertebrate taste and smell systems, began a collaborative investigation at Kagoshima University examining the physiology of the taste system of the Japanese sea catfish. While performing electrical recordings from the fish barbells, or "whiskers," he noticed that every so often some new sensory nerve fibers would respond at a much larger amplitude than the others.

"Immediately I knew that there was something different about those nerves, but I was working on a different project funded by the National Science Foundation and had to put my curiosities on the back burner," Caprio said.

In 1986, Caprio's curiosities got the best of him, and he asked his friends in Japan to ship him some of the catfish so that he could examine what was triggering such huge responses in the fish.

"I suspected the response was due to a change in pH caused by some of the tested stimuli," he said. "It was obvious that there were sensory nerve fibers in these fish that were responding to transient lowering of the pH of the seawater; however, what I did not know was what function this response served."

Caprio tabled the investigation again, as other research activities took precedence, and resumed his analysis in 2005 with support from the National Institutes of Health and LSU. Caprio traveled to Japan six times between 2005 and 2013, staying at least a month each visit. During this time, he focused his attention on the fishes' nervous system, while colleagues conducted behavior experiments.

For the physiological experiments, the fish were outfitted with electrodes that allowed the recording of the fishes' responses to water of varying pH. It was during this time that they determined that the function of the sensitivity of the fishes' barbells to minor changes in water pH was due to the respiration of small sea worms, polychaetes, a primary prey of the sea catfish.

The sea worms live in tubes or burrows in the mud. As the worms breathe, they release tiny amounts of carbon dioxide and acid, producing a slight decrease in the pH of the seawater that the nocturnal sea catfish detects.

"These fish are like swimming pH meters. They are just as good as a commercial pH meter in the lab," Caprio said.

For the behavioral experiments, the researchers placed the fish in aquariums filled with seawater, along with the sea worms, which were placed into glass tubes within the coral substrate of the aquarium. The researchers used infrared photography to show that the nocturnally active fish spent significantly more time in the vicinity of the worms than in other locations in the aquarium. The researchers also confirmed that the catfish were attracted to a location in the aquarium where seawater of a slightly lower pH was being emitted from a small tube even when no worms were present. In addition, the fish became extremely active, searching for food and even bit repeatedly at the end of the tube.

The research indicates that the catfishes' sensitivity was highest in natural seawater of pH 8.2, but decreased dramatically at pH less than 8. These findings imply that the food-locating abilities of Japanese sea catfish could be compromised by ocean acidification, the ongoing decrease in the pH of the Earth's oceans due to uptake of carbon dioxide from the atmosphere caused in great part by man-made activities.

Studies show that prior to the industrial revolution, carbon dioxide levels were approximately 280 parts per million. Today, it is 390 parts per million, and scientists predict that the levels could increase to 900 parts per million by the year 2100. According to the National Oceanic and Atmospheric Administration, the oceans absorb about a quarter of the carbon dioxide released in the atmosphere each year, resulting in increasing acidified seawater.

"Once the pH of the ocean drops much below 8, shell producing invertebrates can no longer produce their shells," Caprio said. "Our work could possibly be an indicator of the possible effects of ocean acidification on marine vertebrates. If ocean acidification continues at its same rate, we do not know if marine life will be able adapt to such a rapid alteration in pH. It is possible that the sensors could adapt to such a change, but we are not certain that this will happen. As of today, what we know is that these sensors work optimally in the vicinity of pH of 8.2, that of normal seawater. If ocean pH drops much below 8, a number of deleterious events are likely to occur."

Aaron Looney | Eurek Alert!
Further information:
http://www.lsu.edu/

Further reports about: LSU catfish detecting dioxide experiments nerve fibers tubes

More articles from Life Sciences:

nachricht Strong Evidence – New Insight in Muscle Function
27.04.2015 | Austrian Science Fund FWF

nachricht Cell fusion ‘eats up’ the ‘attractive cell’ in flowering plants
27.04.2015 | Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Strong Evidence – New Insight in Muscle Function

27.04.2015 | Life Sciences

The Future of Oil and Gas: Last of Her Kind

27.04.2015 | Power and Electrical Engineering

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections

27.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>