Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


LSU biologist James Caprio, Japanese colleagues identify unique way catfish locate prey


Research findings to be published in June 6 issue of Science

Animals incorporate a number of unique methods for detecting prey, but for the Japanese sea catfish, Plotosus japonicus, it is especially tricky given the dark murky waters where it resides.

John Caprio, George C. Kent Professor of Biological Sciences at LSU, and colleagues from Kagoshima University in Japan have identified that these fish are equipped with sensors that can locate prey by detecting slight changes in the water's pH level.

A paper, "Marine teleost locates live prey through pH sensing," detailing the work of Caprio and his research partners, will be published in the journal Science on Friday, June 6. This is the first report of any fish using pH to find live prey.

... more about:
»LSU »catfish »detecting »dioxide »experiments »nerve fibers »tubes

"What makes this so interesting is that the discovery was unexpected, quite serendipitous," Caprio said.

The study was an offshoot of work initiated in 1984 when Caprio, a specialist in aquatic vertebrate taste and smell systems, began a collaborative investigation at Kagoshima University examining the physiology of the taste system of the Japanese sea catfish. While performing electrical recordings from the fish barbells, or "whiskers," he noticed that every so often some new sensory nerve fibers would respond at a much larger amplitude than the others.

"Immediately I knew that there was something different about those nerves, but I was working on a different project funded by the National Science Foundation and had to put my curiosities on the back burner," Caprio said.

In 1986, Caprio's curiosities got the best of him, and he asked his friends in Japan to ship him some of the catfish so that he could examine what was triggering such huge responses in the fish.

"I suspected the response was due to a change in pH caused by some of the tested stimuli," he said. "It was obvious that there were sensory nerve fibers in these fish that were responding to transient lowering of the pH of the seawater; however, what I did not know was what function this response served."

Caprio tabled the investigation again, as other research activities took precedence, and resumed his analysis in 2005 with support from the National Institutes of Health and LSU. Caprio traveled to Japan six times between 2005 and 2013, staying at least a month each visit. During this time, he focused his attention on the fishes' nervous system, while colleagues conducted behavior experiments.

For the physiological experiments, the fish were outfitted with electrodes that allowed the recording of the fishes' responses to water of varying pH. It was during this time that they determined that the function of the sensitivity of the fishes' barbells to minor changes in water pH was due to the respiration of small sea worms, polychaetes, a primary prey of the sea catfish.

The sea worms live in tubes or burrows in the mud. As the worms breathe, they release tiny amounts of carbon dioxide and acid, producing a slight decrease in the pH of the seawater that the nocturnal sea catfish detects.

"These fish are like swimming pH meters. They are just as good as a commercial pH meter in the lab," Caprio said.

For the behavioral experiments, the researchers placed the fish in aquariums filled with seawater, along with the sea worms, which were placed into glass tubes within the coral substrate of the aquarium. The researchers used infrared photography to show that the nocturnally active fish spent significantly more time in the vicinity of the worms than in other locations in the aquarium. The researchers also confirmed that the catfish were attracted to a location in the aquarium where seawater of a slightly lower pH was being emitted from a small tube even when no worms were present. In addition, the fish became extremely active, searching for food and even bit repeatedly at the end of the tube.

The research indicates that the catfishes' sensitivity was highest in natural seawater of pH 8.2, but decreased dramatically at pH less than 8. These findings imply that the food-locating abilities of Japanese sea catfish could be compromised by ocean acidification, the ongoing decrease in the pH of the Earth's oceans due to uptake of carbon dioxide from the atmosphere caused in great part by man-made activities.

Studies show that prior to the industrial revolution, carbon dioxide levels were approximately 280 parts per million. Today, it is 390 parts per million, and scientists predict that the levels could increase to 900 parts per million by the year 2100. According to the National Oceanic and Atmospheric Administration, the oceans absorb about a quarter of the carbon dioxide released in the atmosphere each year, resulting in increasing acidified seawater.

"Once the pH of the ocean drops much below 8, shell producing invertebrates can no longer produce their shells," Caprio said. "Our work could possibly be an indicator of the possible effects of ocean acidification on marine vertebrates. If ocean acidification continues at its same rate, we do not know if marine life will be able adapt to such a rapid alteration in pH. It is possible that the sensors could adapt to such a change, but we are not certain that this will happen. As of today, what we know is that these sensors work optimally in the vicinity of pH of 8.2, that of normal seawater. If ocean pH drops much below 8, a number of deleterious events are likely to occur."

Aaron Looney | Eurek Alert!
Further information:

Further reports about: LSU catfish detecting dioxide experiments nerve fibers tubes

More articles from Life Sciences:

nachricht Sweetening neurotransmitter receptors and other neuronal proteins
28.10.2016 | Max-Planck-Institut für Hirnforschung

nachricht A new look at thyroid diseases
28.10.2016 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>