Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSU biologist James Caprio, Japanese colleagues identify unique way catfish locate prey

06.06.2014

Research findings to be published in June 6 issue of Science

Animals incorporate a number of unique methods for detecting prey, but for the Japanese sea catfish, Plotosus japonicus, it is especially tricky given the dark murky waters where it resides.

John Caprio, George C. Kent Professor of Biological Sciences at LSU, and colleagues from Kagoshima University in Japan have identified that these fish are equipped with sensors that can locate prey by detecting slight changes in the water's pH level.

A paper, "Marine teleost locates live prey through pH sensing," detailing the work of Caprio and his research partners, will be published in the journal Science on Friday, June 6. This is the first report of any fish using pH to find live prey.

... more about:
»LSU »catfish »detecting »dioxide »experiments »nerve fibers »tubes

"What makes this so interesting is that the discovery was unexpected, quite serendipitous," Caprio said.

The study was an offshoot of work initiated in 1984 when Caprio, a specialist in aquatic vertebrate taste and smell systems, began a collaborative investigation at Kagoshima University examining the physiology of the taste system of the Japanese sea catfish. While performing electrical recordings from the fish barbells, or "whiskers," he noticed that every so often some new sensory nerve fibers would respond at a much larger amplitude than the others.

"Immediately I knew that there was something different about those nerves, but I was working on a different project funded by the National Science Foundation and had to put my curiosities on the back burner," Caprio said.

In 1986, Caprio's curiosities got the best of him, and he asked his friends in Japan to ship him some of the catfish so that he could examine what was triggering such huge responses in the fish.

"I suspected the response was due to a change in pH caused by some of the tested stimuli," he said. "It was obvious that there were sensory nerve fibers in these fish that were responding to transient lowering of the pH of the seawater; however, what I did not know was what function this response served."

Caprio tabled the investigation again, as other research activities took precedence, and resumed his analysis in 2005 with support from the National Institutes of Health and LSU. Caprio traveled to Japan six times between 2005 and 2013, staying at least a month each visit. During this time, he focused his attention on the fishes' nervous system, while colleagues conducted behavior experiments.

For the physiological experiments, the fish were outfitted with electrodes that allowed the recording of the fishes' responses to water of varying pH. It was during this time that they determined that the function of the sensitivity of the fishes' barbells to minor changes in water pH was due to the respiration of small sea worms, polychaetes, a primary prey of the sea catfish.

The sea worms live in tubes or burrows in the mud. As the worms breathe, they release tiny amounts of carbon dioxide and acid, producing a slight decrease in the pH of the seawater that the nocturnal sea catfish detects.

"These fish are like swimming pH meters. They are just as good as a commercial pH meter in the lab," Caprio said.

For the behavioral experiments, the researchers placed the fish in aquariums filled with seawater, along with the sea worms, which were placed into glass tubes within the coral substrate of the aquarium. The researchers used infrared photography to show that the nocturnally active fish spent significantly more time in the vicinity of the worms than in other locations in the aquarium. The researchers also confirmed that the catfish were attracted to a location in the aquarium where seawater of a slightly lower pH was being emitted from a small tube even when no worms were present. In addition, the fish became extremely active, searching for food and even bit repeatedly at the end of the tube.

The research indicates that the catfishes' sensitivity was highest in natural seawater of pH 8.2, but decreased dramatically at pH less than 8. These findings imply that the food-locating abilities of Japanese sea catfish could be compromised by ocean acidification, the ongoing decrease in the pH of the Earth's oceans due to uptake of carbon dioxide from the atmosphere caused in great part by man-made activities.

Studies show that prior to the industrial revolution, carbon dioxide levels were approximately 280 parts per million. Today, it is 390 parts per million, and scientists predict that the levels could increase to 900 parts per million by the year 2100. According to the National Oceanic and Atmospheric Administration, the oceans absorb about a quarter of the carbon dioxide released in the atmosphere each year, resulting in increasing acidified seawater.

"Once the pH of the ocean drops much below 8, shell producing invertebrates can no longer produce their shells," Caprio said. "Our work could possibly be an indicator of the possible effects of ocean acidification on marine vertebrates. If ocean acidification continues at its same rate, we do not know if marine life will be able adapt to such a rapid alteration in pH. It is possible that the sensors could adapt to such a change, but we are not certain that this will happen. As of today, what we know is that these sensors work optimally in the vicinity of pH of 8.2, that of normal seawater. If ocean pH drops much below 8, a number of deleterious events are likely to occur."

Aaron Looney | Eurek Alert!
Further information:
http://www.lsu.edu/

Further reports about: LSU catfish detecting dioxide experiments nerve fibers tubes

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>