Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low Oxygen Levels May Decrease Life-Saving Protein in Spinal Muscular Atrophy

22.08.2012
Investigators at Nationwide Children’s Hospital may have discovered a biological explanation for why low levels of oxygen advance spinal muscular atrophy (SMA) symptoms and why breathing treatments help SMA patients live longer. The findings appear in Human Molecular Genetics.*
SMA is a progressive neurodegenerative disease that causes muscle damage and weakness leading to death. Respiratory support is one of the most common treatment options for severe SMA patients since respiratory deficiencies increase as the disease progresses. Clinicians have found that successful oxygen support can allow patients with severe SMA to live longer. However, the biological relationship between SMA symptoms and low oxygen levels isn’t clear.

To better understand this relationship, investigators at Nationwide Children’s Hospital examined gene expression within a mouse model of severe SMA. “We questioned whether low levels of oxygen linked to biological stress is a component of SMA disease progression and whether these low oxygen levels could influence how the SMN2 gene is spliced,” says Dawn Chandler, PhD, principal investigator in the Center for Childhood Cancer and Blood Diseases at The Research Institute at Nationwide Children’s Hospital.

SMA is caused by mutation or deletion of the SMN1 gene that leads to reduced levels of the survival motor neuron protein. Although a duplicate SMN gene exists in humans, SMN2, it only produces low levels of functional protein. This is caused by a splicing error in SMN2 in which exon 7 is predominantly skipped, lowering the amount of template used for protein construction.

Mouse models of severe SMA have shown changes in how genes are differentially spliced and expressed as the disease progresses, especially near end-stages. “One gene that undergoes extreme alteration is Hif3alpha,” says Dr. Chandler. “This is a stress gene that responds to changes in available oxygen in the cellular environment, specifically to decreases in oxygen. This gave us a clue that low levels of oxygen might influence how the SMN2 gene is spliced.”

Upon examining mouse models of severe SMA exposed to low oxygen levels, Dr. Chandler’s team found that SMN2 exon 7 skipping increased within skeletal muscles. When the mice were treated with higher oxygen levels, exon 7 was included more often and the mice showed signs of improved motor function.

“These data correspond with the improvements seen in SMA patients who undergo oxygen treatment,” says Dr. Chandler. “Our findings suggest that respiratory assistance is beneficial in part because it helps prevent periods of low oxygenation that would otherwise increase SMN2 exon 7 skipping and reduce SMN levels.”

Dr. Chandler says daytime indicators that reveal when an SMA patient is experiencing low oxygen levels during sleep may serve as a measure to include SMA patients in earlier respiratory support and therefore improve quality of life or survival.

*Bebee TW, Dominguez CE, Samadzadeh-Tarighat S, Akehurst KL, Chandler DS. Hypoxia is a modifier of SMN2 splicing and disease severity in a severe SMA mouse model. Hum Mol Genet. 2012 Jul 20.

Erin Pope | EurekAlert!
Further information:
http://www.NationwideChildrens.org

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>