Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low Oxygen Levels May Decrease Life-Saving Protein in Spinal Muscular Atrophy

22.08.2012
Investigators at Nationwide Children’s Hospital may have discovered a biological explanation for why low levels of oxygen advance spinal muscular atrophy (SMA) symptoms and why breathing treatments help SMA patients live longer. The findings appear in Human Molecular Genetics.*
SMA is a progressive neurodegenerative disease that causes muscle damage and weakness leading to death. Respiratory support is one of the most common treatment options for severe SMA patients since respiratory deficiencies increase as the disease progresses. Clinicians have found that successful oxygen support can allow patients with severe SMA to live longer. However, the biological relationship between SMA symptoms and low oxygen levels isn’t clear.

To better understand this relationship, investigators at Nationwide Children’s Hospital examined gene expression within a mouse model of severe SMA. “We questioned whether low levels of oxygen linked to biological stress is a component of SMA disease progression and whether these low oxygen levels could influence how the SMN2 gene is spliced,” says Dawn Chandler, PhD, principal investigator in the Center for Childhood Cancer and Blood Diseases at The Research Institute at Nationwide Children’s Hospital.

SMA is caused by mutation or deletion of the SMN1 gene that leads to reduced levels of the survival motor neuron protein. Although a duplicate SMN gene exists in humans, SMN2, it only produces low levels of functional protein. This is caused by a splicing error in SMN2 in which exon 7 is predominantly skipped, lowering the amount of template used for protein construction.

Mouse models of severe SMA have shown changes in how genes are differentially spliced and expressed as the disease progresses, especially near end-stages. “One gene that undergoes extreme alteration is Hif3alpha,” says Dr. Chandler. “This is a stress gene that responds to changes in available oxygen in the cellular environment, specifically to decreases in oxygen. This gave us a clue that low levels of oxygen might influence how the SMN2 gene is spliced.”

Upon examining mouse models of severe SMA exposed to low oxygen levels, Dr. Chandler’s team found that SMN2 exon 7 skipping increased within skeletal muscles. When the mice were treated with higher oxygen levels, exon 7 was included more often and the mice showed signs of improved motor function.

“These data correspond with the improvements seen in SMA patients who undergo oxygen treatment,” says Dr. Chandler. “Our findings suggest that respiratory assistance is beneficial in part because it helps prevent periods of low oxygenation that would otherwise increase SMN2 exon 7 skipping and reduce SMN levels.”

Dr. Chandler says daytime indicators that reveal when an SMA patient is experiencing low oxygen levels during sleep may serve as a measure to include SMA patients in earlier respiratory support and therefore improve quality of life or survival.

*Bebee TW, Dominguez CE, Samadzadeh-Tarighat S, Akehurst KL, Chandler DS. Hypoxia is a modifier of SMN2 splicing and disease severity in a severe SMA mouse model. Hum Mol Genet. 2012 Jul 20.

Erin Pope | EurekAlert!
Further information:
http://www.NationwideChildrens.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>