Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-maintenance strawberry may be good crop to grow in space

04.05.2010
Astronauts could one day tend their own crops on long space missions, and Purdue University researchers have found a healthy candidate to help satisfy a sweet tooth - a strawberry that requires little maintenance and energy.

Cary Mitchell, professor of horticulture, and Gioia Massa, a horticulture research scientist, tested several cultivars of strawberries and found one variety, named Seascape, which seems to meet the requirements for becoming a space crop.

"What we're trying to do is grow our plants and minimize all of our inputs," Massa said. "We can grow these strawberries under shorter photoperiods than we thought and still get pretty much the same amount of yield."

Seascape strawberries are day-neutral, meaning they aren't sensitive to the length of available daylight to flower. Seascape was tested with as much as 20 hours of daylight and as little as 10 hours. While there were fewer strawberries with less light, each berry was larger and the volume of the yields was statistically the same.

"I was astounded that even with a day-neutral cultivar we were able to get basically the same amount of fruit with half the light," Mitchell said.

The findings, which were reported online early in the journal Advances in Space Research, showed that the Seascape strawberry cultivar is a good candidate for a space crop because it meets several guidelines set by NASA. Strawberry plants are relatively small, meeting mass and volume restrictions. Since Seascape provides fewer, but larger, berries under short days, there is less labor required of crew members who would have to pollinate and harvest the plants by hand. Needing less light cuts down energy requirements not only for lamps, but also for systems that would have to remove heat created by those lights.

"We're trying to think of the whole system -- growing food, preparing it and getting rid of the waste," Massa said. "Strawberries are easy to prepare and there's little waste."

Seascape also had less cycling, meaning it steadily supplied fruit throughout the test period. Massa said the plants kept producing fruit for about six months after starting to flower.

Mitchell said the earliest space crops will likely be part of a "salad machine," a small growth unit that will provide fresh produce that can supplement traditional space meals. Crops being considered include lettuces, radishes and tomatoes. Strawberries may be the only sweet fruit being considered, he said.

"The idea is to supplement the human diet with something people can look forward to," Mitchell said. "Fresh berries can certainly do that."

Judith Santini, a research statistical analyst in Purdue's Department of Agronomy, was responsible for data analysis from the tests.

Mitchell and Massa said they next plan to test Seascape strawberries using LED lighting, hydroponics and different temperature ranges. NASA funded their work.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Cary Mitchell, 765-494-1347, cmitchell@purdue.edu

Gioia Massa, 765-496-2124, gmassa@purdue.edu

Judith Santini, 765-494-6663, jsantini@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>