Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-maintenance strawberry may be good crop to grow in space

04.05.2010
Astronauts could one day tend their own crops on long space missions, and Purdue University researchers have found a healthy candidate to help satisfy a sweet tooth - a strawberry that requires little maintenance and energy.

Cary Mitchell, professor of horticulture, and Gioia Massa, a horticulture research scientist, tested several cultivars of strawberries and found one variety, named Seascape, which seems to meet the requirements for becoming a space crop.

"What we're trying to do is grow our plants and minimize all of our inputs," Massa said. "We can grow these strawberries under shorter photoperiods than we thought and still get pretty much the same amount of yield."

Seascape strawberries are day-neutral, meaning they aren't sensitive to the length of available daylight to flower. Seascape was tested with as much as 20 hours of daylight and as little as 10 hours. While there were fewer strawberries with less light, each berry was larger and the volume of the yields was statistically the same.

"I was astounded that even with a day-neutral cultivar we were able to get basically the same amount of fruit with half the light," Mitchell said.

The findings, which were reported online early in the journal Advances in Space Research, showed that the Seascape strawberry cultivar is a good candidate for a space crop because it meets several guidelines set by NASA. Strawberry plants are relatively small, meeting mass and volume restrictions. Since Seascape provides fewer, but larger, berries under short days, there is less labor required of crew members who would have to pollinate and harvest the plants by hand. Needing less light cuts down energy requirements not only for lamps, but also for systems that would have to remove heat created by those lights.

"We're trying to think of the whole system -- growing food, preparing it and getting rid of the waste," Massa said. "Strawberries are easy to prepare and there's little waste."

Seascape also had less cycling, meaning it steadily supplied fruit throughout the test period. Massa said the plants kept producing fruit for about six months after starting to flower.

Mitchell said the earliest space crops will likely be part of a "salad machine," a small growth unit that will provide fresh produce that can supplement traditional space meals. Crops being considered include lettuces, radishes and tomatoes. Strawberries may be the only sweet fruit being considered, he said.

"The idea is to supplement the human diet with something people can look forward to," Mitchell said. "Fresh berries can certainly do that."

Judith Santini, a research statistical analyst in Purdue's Department of Agronomy, was responsible for data analysis from the tests.

Mitchell and Massa said they next plan to test Seascape strawberries using LED lighting, hydroponics and different temperature ranges. NASA funded their work.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Sources: Cary Mitchell, 765-494-1347, cmitchell@purdue.edu

Gioia Massa, 765-496-2124, gmassa@purdue.edu

Judith Santini, 765-494-6663, jsantini@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>