Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of species makes nature more sensitive to climate change

26.09.2012
When we wipe out the most sensitive species, human beings reduce the resilience of ecosystems to climate change, reveals a new study from biologists at the University of Gothenburg, published today in the journal Ecology Letters.

High biodiversity acts as an insurance policy for nature and society alike as it increases the likelihood that at least some species will be sufficiently resilient to sustain important functions such as water purification and crop pollination in a changing environment.

“It’s the same principle as an investment portfolio – you’d be mad to put all your eggs in one basket,” says researcher Johan Eklöf.

Experiments with eelgrass meadows in shallow inlets on the west coast of Sweden are now showing that climate change can exacerbate the negative effects of losing sensitive species, and that the insurance effect of biodiversity may be weaker than what we typically assume.

Eelgrass meadows in shallow inlets are important nursery habitats for cod, for example. Since the early 1980s the prevalence of eelgrass has fallen dramatically along the Bohuslän coast.

This is thought to be due partly to eutrophication, which favours mats of filamentous "nuisance" algae which shade and suffocate the eelgrass, and partly to the loss of cod, which has resulted in a huge increase in numbers of smaller predatory fish. These predatory fish, in turn, reduce numbers of Grammarus locusta, herbivorous crustaceans which are effective grazers that normally control the filamentous algae.

This type of cascade effect has become increasingly common both onshore and off as many types of predator have been wiped out by hunting or fishing. Worryingly, theory and observations would indicate that these effects could magnify the effects of global warming, which favours heat-tolerant but grazing-sensitive plants such as filamentous algae.

At the Sven Lovén Centre for Marine Sciences’ Kristineberg research station on Gullmarsfjorden, researchers from the University of Gothenburg’s Department of Biology and Environmental Sciences have developed miniature ecosystems in outdoor aquariums and have been investigating how future ocean warming and ocean acidification could affect the balance between eelgrass and filamentous algae.

The effects were unexpectedly clear and unambiguous: it was the diversity of algal herbivores that determined the extent to which the ecosystem was affected by warming and acidification.

“High diversity meant that neither warming nor acidification had any real effect as the algae were eaten before they managed to grow and shade the eelgrass,” says researcher and biologist Johan Eklöf, who headed up the study. “But when we simultaneously simulated the effects of fishing and removed the effective but vulnerable herbivor Grammarus locusta, the algae took over the ecosystem – especially in the warmer conditions.”

The researchers believe that we should be concerned about the results.
“Most management is based on the assumption that we afford to lose the most sensitive species because other, more resilient species will take their place,” says Johan Eklöf. “But this may not be the case with future climate changes, as it can reduce the net efficiency of the resilient species – without directly affecting them.”

However, the researchers are also careful to point out that there is still hope if society does decide to take action.

“If we protect the local biodiversity we still have, and restore the diversity we’ve lost, by for example protecting predatory fish stocks in coastal areas and reducing nutrient loading, then we’ll probably be able to increase the ecosystems’ resilience to climate change.”

Contact: Johan Eklöf
+ 46 707-38 43 15
johane@ecology.su.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>