Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Loss of species makes nature more sensitive to climate change

When we wipe out the most sensitive species, human beings reduce the resilience of ecosystems to climate change, reveals a new study from biologists at the University of Gothenburg, published today in the journal Ecology Letters.

High biodiversity acts as an insurance policy for nature and society alike as it increases the likelihood that at least some species will be sufficiently resilient to sustain important functions such as water purification and crop pollination in a changing environment.

“It’s the same principle as an investment portfolio – you’d be mad to put all your eggs in one basket,” says researcher Johan Eklöf.

Experiments with eelgrass meadows in shallow inlets on the west coast of Sweden are now showing that climate change can exacerbate the negative effects of losing sensitive species, and that the insurance effect of biodiversity may be weaker than what we typically assume.

Eelgrass meadows in shallow inlets are important nursery habitats for cod, for example. Since the early 1980s the prevalence of eelgrass has fallen dramatically along the Bohuslän coast.

This is thought to be due partly to eutrophication, which favours mats of filamentous "nuisance" algae which shade and suffocate the eelgrass, and partly to the loss of cod, which has resulted in a huge increase in numbers of smaller predatory fish. These predatory fish, in turn, reduce numbers of Grammarus locusta, herbivorous crustaceans which are effective grazers that normally control the filamentous algae.

This type of cascade effect has become increasingly common both onshore and off as many types of predator have been wiped out by hunting or fishing. Worryingly, theory and observations would indicate that these effects could magnify the effects of global warming, which favours heat-tolerant but grazing-sensitive plants such as filamentous algae.

At the Sven Lovén Centre for Marine Sciences’ Kristineberg research station on Gullmarsfjorden, researchers from the University of Gothenburg’s Department of Biology and Environmental Sciences have developed miniature ecosystems in outdoor aquariums and have been investigating how future ocean warming and ocean acidification could affect the balance between eelgrass and filamentous algae.

The effects were unexpectedly clear and unambiguous: it was the diversity of algal herbivores that determined the extent to which the ecosystem was affected by warming and acidification.

“High diversity meant that neither warming nor acidification had any real effect as the algae were eaten before they managed to grow and shade the eelgrass,” says researcher and biologist Johan Eklöf, who headed up the study. “But when we simultaneously simulated the effects of fishing and removed the effective but vulnerable herbivor Grammarus locusta, the algae took over the ecosystem – especially in the warmer conditions.”

The researchers believe that we should be concerned about the results.
“Most management is based on the assumption that we afford to lose the most sensitive species because other, more resilient species will take their place,” says Johan Eklöf. “But this may not be the case with future climate changes, as it can reduce the net efficiency of the resilient species – without directly affecting them.”

However, the researchers are also careful to point out that there is still hope if society does decide to take action.

“If we protect the local biodiversity we still have, and restore the diversity we’ve lost, by for example protecting predatory fish stocks in coastal areas and reducing nutrient loading, then we’ll probably be able to increase the ecosystems’ resilience to climate change.”

Contact: Johan Eklöf
+ 46 707-38 43 15

Helena Aaberg | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>