Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of protein SPDEF allows prostate cancer cells to establish new colonies at possible sites of metastasis

06.07.2012
Prostate cancer doesn’t kill in the prostate — it’s the disease’s metastasis to other tissues that can be fatal.
A University of Colorado Cancer Center study published this week in the Journal of Biological Chemistry shows that prostate cancer cells containing the protein SPDEF continue to grow at the same pace as their SPDEF- cousins, but that these SPDEF+ cells are unable to survive at possible sites of metastasis.

“It’s as if these cancer cells with SPDEF can’t chew into distant tissue and so are unable to make new homes,” says Hari Koul, PhD, investigator at the CU Cancer Center and director of urology research at the University of Colorado School of Medicine, the study’s senior author.

Koul and his group discovered the homesteading power of cancer cells that have lost SPDEF by introducing a gene into cells that makes them glow in the presence of a dye, and then introducing them into the bloodstream of animal models. Cells without SPDEF traveled through the blood and successfully attached to tissue, surviving and so fluorescing many weeks later when dye was introduced. However, cells with SPDEF flowed through the blood but were unable to successfully establish new colonies and so soon died out.

In fact, the protein SPDEF doesn’t act directly to allow cells to attach at possible metastasis sites, but is a transcription factor that controls the production (or lack thereof) of two other proteins MMP9 and MMP13. These two downstream proteins work to break down tissue, like a dissolving agent – they are the cleaning crew that clears space for new and different growth, and in the case of prostate cancer metastasis they chip the tissue footholds that cancer cells need to create micrometastases.

“Given that MMP9 and perhaps MMP13 are also involved in metastasis of several other cancers including lung, ovarian, breast and colon to name a few, our findings could potentially have far-reaching consequences outside prostate cancer,” adds Koul

The group’s continuing work points in two directions.

“First, we hope that the presence of SPDEF could help doctors recognize prostate cancers that don’t require treatment.” If future studies confirm the group’s initial findings, the presence of SPDEF could predict prostate cancers that are unable to metastasize and so unable to kill. These cancers could be left to run their course without the use of treatments that sometimes carry difficult side effects.

“And second,” Koul says, “we hope to regulate expression of this protein to remove prostate cancers’ ability to metastasize.”

Koul points to small molecules, gene therapy or nanodelivery as possible mechanisms for introducing SPDEF into cells that lack the protein.

“With this discovery we have opened a hopeful door into a future in which prostate and potentially other cancers are unable to metastasize,” Koul says.

Studies supported in part by chair commitment and Department of Surgery, School of Medicine Academic Enrichment Funds, VA Merit Award- 01BX001258, NIH R01 DK54084, and NIH/NCI R01CA161880

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

Further reports about: Cancer Colorado river MMP13 Medicine SPDEF cancer cells prostate cancer

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>