Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of protein SPDEF allows prostate cancer cells to establish new colonies at possible sites of metastasis

06.07.2012
Prostate cancer doesn’t kill in the prostate — it’s the disease’s metastasis to other tissues that can be fatal.
A University of Colorado Cancer Center study published this week in the Journal of Biological Chemistry shows that prostate cancer cells containing the protein SPDEF continue to grow at the same pace as their SPDEF- cousins, but that these SPDEF+ cells are unable to survive at possible sites of metastasis.

“It’s as if these cancer cells with SPDEF can’t chew into distant tissue and so are unable to make new homes,” says Hari Koul, PhD, investigator at the CU Cancer Center and director of urology research at the University of Colorado School of Medicine, the study’s senior author.

Koul and his group discovered the homesteading power of cancer cells that have lost SPDEF by introducing a gene into cells that makes them glow in the presence of a dye, and then introducing them into the bloodstream of animal models. Cells without SPDEF traveled through the blood and successfully attached to tissue, surviving and so fluorescing many weeks later when dye was introduced. However, cells with SPDEF flowed through the blood but were unable to successfully establish new colonies and so soon died out.

In fact, the protein SPDEF doesn’t act directly to allow cells to attach at possible metastasis sites, but is a transcription factor that controls the production (or lack thereof) of two other proteins MMP9 and MMP13. These two downstream proteins work to break down tissue, like a dissolving agent – they are the cleaning crew that clears space for new and different growth, and in the case of prostate cancer metastasis they chip the tissue footholds that cancer cells need to create micrometastases.

“Given that MMP9 and perhaps MMP13 are also involved in metastasis of several other cancers including lung, ovarian, breast and colon to name a few, our findings could potentially have far-reaching consequences outside prostate cancer,” adds Koul

The group’s continuing work points in two directions.

“First, we hope that the presence of SPDEF could help doctors recognize prostate cancers that don’t require treatment.” If future studies confirm the group’s initial findings, the presence of SPDEF could predict prostate cancers that are unable to metastasize and so unable to kill. These cancers could be left to run their course without the use of treatments that sometimes carry difficult side effects.

“And second,” Koul says, “we hope to regulate expression of this protein to remove prostate cancers’ ability to metastasize.”

Koul points to small molecules, gene therapy or nanodelivery as possible mechanisms for introducing SPDEF into cells that lack the protein.

“With this discovery we have opened a hopeful door into a future in which prostate and potentially other cancers are unable to metastasize,” Koul says.

Studies supported in part by chair commitment and Department of Surgery, School of Medicine Academic Enrichment Funds, VA Merit Award- 01BX001258, NIH R01 DK54084, and NIH/NCI R01CA161880

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

Further reports about: Cancer Colorado river MMP13 Medicine SPDEF cancer cells prostate cancer

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>