Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of protein SPDEF allows prostate cancer cells to establish new colonies at possible sites of metastasis

06.07.2012
Prostate cancer doesn’t kill in the prostate — it’s the disease’s metastasis to other tissues that can be fatal.
A University of Colorado Cancer Center study published this week in the Journal of Biological Chemistry shows that prostate cancer cells containing the protein SPDEF continue to grow at the same pace as their SPDEF- cousins, but that these SPDEF+ cells are unable to survive at possible sites of metastasis.

“It’s as if these cancer cells with SPDEF can’t chew into distant tissue and so are unable to make new homes,” says Hari Koul, PhD, investigator at the CU Cancer Center and director of urology research at the University of Colorado School of Medicine, the study’s senior author.

Koul and his group discovered the homesteading power of cancer cells that have lost SPDEF by introducing a gene into cells that makes them glow in the presence of a dye, and then introducing them into the bloodstream of animal models. Cells without SPDEF traveled through the blood and successfully attached to tissue, surviving and so fluorescing many weeks later when dye was introduced. However, cells with SPDEF flowed through the blood but were unable to successfully establish new colonies and so soon died out.

In fact, the protein SPDEF doesn’t act directly to allow cells to attach at possible metastasis sites, but is a transcription factor that controls the production (or lack thereof) of two other proteins MMP9 and MMP13. These two downstream proteins work to break down tissue, like a dissolving agent – they are the cleaning crew that clears space for new and different growth, and in the case of prostate cancer metastasis they chip the tissue footholds that cancer cells need to create micrometastases.

“Given that MMP9 and perhaps MMP13 are also involved in metastasis of several other cancers including lung, ovarian, breast and colon to name a few, our findings could potentially have far-reaching consequences outside prostate cancer,” adds Koul

The group’s continuing work points in two directions.

“First, we hope that the presence of SPDEF could help doctors recognize prostate cancers that don’t require treatment.” If future studies confirm the group’s initial findings, the presence of SPDEF could predict prostate cancers that are unable to metastasize and so unable to kill. These cancers could be left to run their course without the use of treatments that sometimes carry difficult side effects.

“And second,” Koul says, “we hope to regulate expression of this protein to remove prostate cancers’ ability to metastasize.”

Koul points to small molecules, gene therapy or nanodelivery as possible mechanisms for introducing SPDEF into cells that lack the protein.

“With this discovery we have opened a hopeful door into a future in which prostate and potentially other cancers are unable to metastasize,” Koul says.

Studies supported in part by chair commitment and Department of Surgery, School of Medicine Academic Enrichment Funds, VA Merit Award- 01BX001258, NIH R01 DK54084, and NIH/NCI R01CA161880

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

Further reports about: Cancer Colorado river MMP13 Medicine SPDEF cancer cells prostate cancer

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>