Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of gene function makes some prostate cancer cells more aggressive

03.02.2010
Prostate cancer cells are more likely to spread to other parts of the body if a specific gene quits functioning normally, according to new data from researchers at UT Southwestern Medical Center.
Certain prostate cancer cells can be held in check by the DAB2IP gene. The gene’s product, the DABIP protein, acts as scaffolding that prevents many other proteins involved in the progression of prostate cancer cells from over-activation. When those cells lose the DAB2IP protein, however, they break free and are able to metastasize, or spread, drastically increasing the risk of cancer progression in other organs as the cells travel through the bloodstream or lymph system.

The study in mice, published in the Jan. 11 issue of the Proceedings of the National Academy of Sciences, found that eliminating the DAB2IP scaffolding in human carcinoma cells caused them to change from epithelial cells to mesenchymal cells – a hallmark of metastatic cancer.
Cells undergoing an epithelial to mesenchymal transition (EMT) experience biological changes that enable them to move freely and spontaneously throughout the body,” said Dr. Jer-Tsong Hsieh, director of the Jean H. & John T. Walker Jr. Center for Research in Urologic Oncology at

UT Southwestern and the study’s senior author. “By restoring DAB2IP function in cancer cells in mice, we reversed their ability to change and metastasize.”

Dr. Hsieh said identifying the DAB2IP protein in human cells might serve as a biomarker, helping physicians identify patients who could have more aggressive, metastatic forms of prostate cancer.

EMT is known to play an important role in embryo implantation, embryogenesis and organ development, and tissue regeneration, as well as in cancer progression and metastasis. For cancer progression, EMT is believed to facilitate the migratory and invasive ability of cancer cells.

“Carcinoma cells undergo several changes that enable them to spread,” said Dr. Hsieh, also professor of urology. “The majority of human visceral tumors derived from carcinomas are primarily made up of epithelial cells. When they acquire mesenchymal phenotypes, they lose cell-to-cell adhesion and become more mobile throughout the body.”

In the current study, Dr. Hsieh and his team first shut down the DAB2IP gene expression in prostate epithelial cells in mice and found that the prostate cancers did indeed metastasize to lymph nodes and other organs in mice. When the researchers restored the DAB2IP genetic function to metastatic prostate cancer cells, the EMT process reversed, thereby inhibiting the cancer cells’ ability to spread.

“Based on the outcome of this paper, we believe the assessment of DAB2IP in these cancer cells can be a valuable prognostic biomarker for risk of the aggressiveness of certain prostate cancers,” said Dr. Daxing Xie, urology postdoctoral researcher and lead author of the study. “Further understanding of the DAB2IP function could also provide potential therapeutic strategies for treating prostate cancer.”

Other UT Southwestern researchers involved in this study were Crystal Gore and Michael Long, research technicians; Dr. Jun Liu, postdoctoral researcher; Rey-Chen Pong, senior research associate; Dr. Ralph Mason, professor of radiology; Dr. Guiyang Hao, postdoctoral researcher; Dr. Wareef Kabbani, assistant professor of pathology; Dr. Xiankai Sun, assistant professor of radiology in the Advanced Imaging Research Center; and Dr. David Boothman, professor of radiation oncology and pharmacology and associate director of translational research in the Harold C. Simmons Comprehensive Cancer Center.

The study was supported by the U.S. Army, the National Institutes of Health and the Department of Energy.

Visit www.utsouthwestern.org/cancercenter to learn more about UT Southwestern’s clinical services in cancer.

Media Contact: Katherine Morales
214-648-3404
katherine.morales@utsouthwestern.edu

Katherine Morales | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>