Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of function of a single gene linked to diabetes in mice

06.01.2014
Researchers from the University of Illinois at Chicago College of Medicine have found that dysfunction in a single gene in mice causes fasting hyperglycemia, one of the major symptoms of type 2 diabetes. Their findings were reported online in the journal Diabetes.

If a gene called MADD is not functioning properly, insulin is not released into the bloodstream to regulate blood sugar levels, says Bellur S. Prabhakar, professor and head of microbiology and immunology at UIC and lead author of the paper.

Type 2 diabetes affects roughly 8 percent of Americans and more than 366 million people worldwide. It can cause serious complications, including cardiovascular disease, kidney failure, loss of limbs and blindness.

In a healthy person, beta cells in the pancreas secrete the hormone insulin in response to increases in blood glucose after eating. Insulin allows glucose to enter cells where it can be used as energy, keeping glucose levels in the blood within a narrow range. People with type 2 diabetes don’t produce enough insulin or are resistant to its effects. They must closely monitor their blood glucose throughout the day and, when medication fails, inject insulin.

In previous work, Prabhakar isolated several genes from human beta cells, including MADD, which is also involved in certain cancers. Small genetic variations found among thousands of human subjects revealed that a mutation in MADD was strongly associated with type 2 diabetes in Europeans and Han Chinese.

People with this mutation had high blood glucose and problems of insulin secretion – the “hallmarks of type 2 diabetes,” Prabhakar said. But it was unclear how the mutation was causing the symptoms, or whether it caused them on its own or in concert with other genes associated with type 2 diabetes.

To study the role of MADD in diabetes, Prabhakar and his colleagues developed a mouse model in which the MADD gene was deleted from the insulin-producing beta cells. All such mice had elevated blood glucose levels, which the researchers found was due to insufficient release of insulin.

“We didn’t see any insulin resistance in their cells, but it was clear that the beta cells were not functioning properly,” Prabhakar said. Examination of the beta cells revealed that they were packed with insulin. “The cells were producing plenty of insulin, they just weren’t secreting it,” he said.

The finding shows that type 2 diabetes can be directly caused by the loss of a properly functioning MADD gene alone, Prabhakar said. “Without the gene, insulin can’t leave the beta cells, and blood glucose levels are chronically high.”

Prabhakar now hopes to investigate the effect of a drug that allows for the secretion of insulin in MADD-deficient beta cells.

“If this drug works to reverse the deficits associated with a defective MADD gene in the beta cells of our model mice, it may have potential for treating people with this mutation who have an insulin-secretion defect and/or type 2 diabetes,” he said.

Jose Oberholzer, chief of transplantation surgery, and Ajay V. Maker, assistant professor of surgery at the University of Illinois Hospital & Health Sciences System; Yong Wang, Ryan Carr, Samir Haddad, Ze Li, Lixia Qian, and Qian Wang of the UIC College of Medicine; and Liang-Cheng Li of Xiamen University are co-authors on the paper.

This research was supported by grant R01DK91526 from the National Institutes of Health.

Sharon Parmet | EurekAlert!
Further information:
http://news.uic.edu/loss-of-function-of-a-single-gene-linked-to-diabetes-in-mice

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>