Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of function of a single gene linked to diabetes in mice

06.01.2014
Researchers from the University of Illinois at Chicago College of Medicine have found that dysfunction in a single gene in mice causes fasting hyperglycemia, one of the major symptoms of type 2 diabetes. Their findings were reported online in the journal Diabetes.

If a gene called MADD is not functioning properly, insulin is not released into the bloodstream to regulate blood sugar levels, says Bellur S. Prabhakar, professor and head of microbiology and immunology at UIC and lead author of the paper.

Type 2 diabetes affects roughly 8 percent of Americans and more than 366 million people worldwide. It can cause serious complications, including cardiovascular disease, kidney failure, loss of limbs and blindness.

In a healthy person, beta cells in the pancreas secrete the hormone insulin in response to increases in blood glucose after eating. Insulin allows glucose to enter cells where it can be used as energy, keeping glucose levels in the blood within a narrow range. People with type 2 diabetes don’t produce enough insulin or are resistant to its effects. They must closely monitor their blood glucose throughout the day and, when medication fails, inject insulin.

In previous work, Prabhakar isolated several genes from human beta cells, including MADD, which is also involved in certain cancers. Small genetic variations found among thousands of human subjects revealed that a mutation in MADD was strongly associated with type 2 diabetes in Europeans and Han Chinese.

People with this mutation had high blood glucose and problems of insulin secretion – the “hallmarks of type 2 diabetes,” Prabhakar said. But it was unclear how the mutation was causing the symptoms, or whether it caused them on its own or in concert with other genes associated with type 2 diabetes.

To study the role of MADD in diabetes, Prabhakar and his colleagues developed a mouse model in which the MADD gene was deleted from the insulin-producing beta cells. All such mice had elevated blood glucose levels, which the researchers found was due to insufficient release of insulin.

“We didn’t see any insulin resistance in their cells, but it was clear that the beta cells were not functioning properly,” Prabhakar said. Examination of the beta cells revealed that they were packed with insulin. “The cells were producing plenty of insulin, they just weren’t secreting it,” he said.

The finding shows that type 2 diabetes can be directly caused by the loss of a properly functioning MADD gene alone, Prabhakar said. “Without the gene, insulin can’t leave the beta cells, and blood glucose levels are chronically high.”

Prabhakar now hopes to investigate the effect of a drug that allows for the secretion of insulin in MADD-deficient beta cells.

“If this drug works to reverse the deficits associated with a defective MADD gene in the beta cells of our model mice, it may have potential for treating people with this mutation who have an insulin-secretion defect and/or type 2 diabetes,” he said.

Jose Oberholzer, chief of transplantation surgery, and Ajay V. Maker, assistant professor of surgery at the University of Illinois Hospital & Health Sciences System; Yong Wang, Ryan Carr, Samir Haddad, Ze Li, Lixia Qian, and Qian Wang of the UIC College of Medicine; and Liang-Cheng Li of Xiamen University are co-authors on the paper.

This research was supported by grant R01DK91526 from the National Institutes of Health.

Sharon Parmet | EurekAlert!
Further information:
http://news.uic.edu/loss-of-function-of-a-single-gene-linked-to-diabetes-in-mice

More articles from Life Sciences:

nachricht Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested
03.08.2015 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Stroke: news about platelets
03.08.2015 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

“Seeing” molecular interactions could give boost to organic electronics

03.08.2015 | Materials Sciences

Stroke: news about platelets

03.08.2015 | Life Sciences

Molecular Spies to Fight Cancer - Procedure for improving tumor diagnosis successfully tested

03.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>