Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long Fuse

17.06.2010
Communication through chemistry: “Fuses” convey information for hours

We currently transmit information electronically; in the future we will most likely use photons. However, these are not the only alternatives. Information can also be transmitted by means of chemical reactions.

George M. Whitesides and his colleagues at Harvard University in Cambridge (Massachusetts, USA) have now developed a concept that allows transmission of alphanumeric information in the form of light pulses with no electricity: the “infofuse”. As the researchers report in the journal Angewandte Chemie, it may be possible to use this principle to develop systems that function under conditions in which electronics or batteries do not work.

The researchers previously developed an infofuse made of nitrocellulose strips. The strips were covered with patterns of dots made of salts of the elements lithium, rubidium, and cesium. When the strip is ignited, the flame travels forward and reaches the dots one after the other. The heat causes the elements to emit light at characteristic wavelengths. The dots may contain combinations of three different salts, resulting in seven possible combinations. A combination of two dots thus allows for 7x7 = 49 different signals.

The problem was that the flame tended to go out. This can be avoided by using a different material as substrate that does not conduct heat away as efficiently, such as fiberglass. Alternatively, the strips can be placed over a “trench” or crimped, so that they no longer lie flat on the surface. This allows for less heat transfer to the substrate.

Another problem with the older system was that the flame front progressed far too quickly, allowing for only short transmission times. Nitrocellulose strips burn at a rate of several centimeters a second. Says Whitesides, “a fuse length of 2.6 km would be required to transmit for 24 hours.” The solution was a dual speed arrangement. Branches of the fast-burning infofuse are attached to a slow-burning central fuse. The distance between branches can be varied as needed, and the flame front progresses at only 1 to 2 m per second. This allows information to be repeated several times or different information to be transmitted periodically.

A color camera or fiber optic cable coupled to a spectrometer could receive the signal over a distance of 30 m in daylight. “We hope that it will be possible to develop a light, portable, non-electric system of information transmission that can be integrated into modern information technology,” says Whitesides. “For example, it could be used to gather and transmit environmental data or to send messages by emergency services.”

Author: George M. Whitesides, Harvard University, Cambridge (USA), http://gmwgroup.harvard.edu/contact.html

Title: Long-Duration Transmission of Information with Infofuses

Angewandte Chemie International Edition 2010, 49, No. 27, 4571–4575, Permalink to the article: http://dx.doi.org/10.1002/anie.201001582

George M. Whitesides | Angewandte Chemie
Further information:
http://gmwgroup.harvard.edu/contact.html
http://pressroom.angewandte.org
http://dx.doi.org/10.1002/anie.201001582

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>