Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Living cells made to fluoresce

10.08.2010
Individual molecules and their dynamics can also be made visible in living cells using conventional fluorophores at a resolution of around 20 nanometers. How this is done is being revealed for the first time by researchers from Würzburg, Bielefeld, and New York in the journal “Nature Methods”.

What happens between the molecules in a cell? How can the various processes be rendered visible? The team led by Professor Markus Sauer has been looking into this issue at the University of Würzburg’s Biocenter. The group is deploying the very latest techniques in fluorescence microscopy, which offer outstanding temporal and spatial resolution.

How does fluorescence microscopy work? To put it simply, DNA, proteins, or other molecules in the cell are labeled with fluorescent dyes. If laser pulses are then “fired” at the cell, the labeled molecules are illuminated briefly. Their fluorescence signal, their “light echo” so to speak, can be made visible using technical tricks.

Optically switchable dyes deliver sharper images

Anyone wishing to image a number of individual proteins, for example, using fluorescence microscopy, is faced with a challenge: if all the proteins in the cell are illuminated at the same time, all that appears under the microscope is a blurred spot of light.

The reason for this is that the proteins lie too close together, their light signals overlap – like on a cruise ship where the light is on in all the cabins. From too far away the eye only sees a single spot of light. However, if the lights on board were to be switched on individually and only for a short time, it would be possible to make out the position of each cabin accurately. “If the ship were moving, this would, of course, have to be done quickly to prevent the light signals from becoming blurred,” says Markus Sauer.

This is the strategy that the Würzburg team is applying – using fluorophores that can be switched on and off by light signals that are “optically switchable”, as the researchers say. The result is significantly sharper images of the states in the cell.

Living cells can be examined using conventional dyes

Optically switchable fluorophores do not work in living cells because the presence of oxygen causes interference – this has been the prevailing opinion in science to date. But Sauer’s team, working with colleagues in Bielefeld and New York, has now shown for the first time that the opposite is true: “We have figured out the mechanism and know for a fact that it also works in living cells.”

What does this mechanism entail? Cells contain glutathione, which, following laser excitation, places most commercially available optically switchable dyes in a stable “off” state lasting several seconds. At the same time, a reaction with oxygen takes place, which switches the dyes back on but is very inefficient. “Most of the dye molecules are therefore continuously off, and this is precisely what is needed for the super-resolution imaging to work,” explains Professor Sauer.

Histones labeled in the cell nucleus

The scientists are parading their methodology in “Nature Methods” using the histones of living human cells. Histones are proteins that help pack DNA in the cell nucleus in a space-saving manner. There are five different histones; the researchers worked with variant 2B.

First of all, they coupled the histones of type 2B to a bacterial enzyme (dihydrofolate reductase). They then added the fluorophore, which they had earlier conjugated to the antibiotic trimethoprim. The trick here is that this antibiotic bonds very specifically with the enzyme, creating a makeshift bridge that is used to label the histones of type 2B with dyes.

Next step: to observe cell division

This method has enabled the researchers to confirm a known fact: DNA packed with histones moves around inside the cell nucleus and does so, depending on the phase of the cell cycle, at a speed of a few nanometers per second. Sauer: “The next step now is to track the process of cell division at a high resolution under the microscope.”

“Live Cell Super-Resolution Imaging with Trimethoprim Conjugates”, Richard Wombacher, Meike Heidbreder, Sebastian van de Linde, Michael P Sheetz, Mike Heilemann, Virginia W Cornish & Markus Sauer, Nature Methods, August 8, 2010, DOI 10.1038/nmeth.1489

Contact

Prof. Dr. Markus Sauer, Department of Biotechnology and Biophysics at the University of Würzburg, T +49 (0)931 31-88687, m.sauer@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>