Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listen! How nerve cells flexibly adapt to acoustic signals

10.04.2014

Depending on the input signal, neurons generate action potentials either near or far away from the cell body, as researcher from Munich predict. This flexibility would improve our ability to localize sound sources.


A neuron in the brain stem, that processes acoustic information. Depending on the situation, the cell generates action potentials in the axon (thin process) either close to or far from the body.

Felix Felmy, 2014

In order to process acoustic information with high temporal fidelity, nerve cells may flexibly adapt their mode of operation according to the situation. At low input frequencies, they generate most outgoing action potentials close to the cell body.

Following inhibitory or high frequency excitatory signals, the cells produce many action potentials more distantly. This way, they are highly sensitive to the different types of input signals.

These findings have been obtained by a research team headed by Professor Christian Leibold, Professor Benedikt Grothe, and Dr. Felix Felmy from the Bernstein Center and the Bernstein Focus Neurotechnology in Munich and the LMU Munich, who used computer models in their study. The researchers report their results in the latest issue of The Journal of Neuroscience.

Did the bang come from ahead or from the right? In order to localize sound sources, nerve cells in the brain stem evaluate the different arrival times of acoustic signals at the two ears. Being able to detect temporal discrepancies of up to 10 millionths of a second, the neurons have to become excited very quickly. In this process, they change the electrical voltage that prevails on their cell membrane.

If a certain threshold is exceeded, the neurons generate a strong electrical signal—a so-called action potential—which can be transmitted efficiently over long axon distances without weakening. In order to reach the threshold, the input signals are summed up. This is achieved easier, the slower the nerve cells alter their electrical membrane potential.

These requirements—rapid voltage changes for a high temporal resolution of the input signals, and slow voltage changes for an optimal signal integration that is necessary for the generation of an action potential—represent a paradoxical challenge for the nerve cell. “This problem is solved by nature by spatially separating the two processes. While input signals are processed in the cell body and the dendrites, action potentials are generated in the axon, a cell process,” says Leibold, leader of the study. But how sustainable is the spatial separation?

In their study, the researchers measured the axons’ geometry and the threshold of the corresponding cells and then constructed a computer model that allowed them to investigate the effectiveness of this spatial separation. The researchers’ model predicts that depending on the situation, neurons produce action potentials with more or less proximity to the cell body.

For high frequency or inhibitory input signals, the cells will shift the location from the axon’s starting point to more distant regions. In this way, the nerve cells ensure that the various kinds of input signals are optimally processed—and thus allow us to perceive both small and large acoustic arrival time differences well, and thereby localize sounds in space.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 170 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Prof. Dr. Christian Leibold
Computational Neuroscience
Department Biology II
LMU Munich
Großhaderner Straße 2
82152 Planegg-Martinsried (Germany)
Tel: +49 (0)89 2180-74802
Email: leibold@bio.lmu.de

Original publication:
S. Lehnert, M. C. Ford, O. Alexandrova, F. Hellmundth, F. Felmy, B. Grothe & C. Leibold (2014): Action potential generation in an anatomically constrained model of medial superior olive axons. Journal of Neuroscience, 34(15): 5370—5384.

Weitere Informationen:

http://neuro.bio.lmu.de/research_groups/res-leibold_ch personal website Christian Leibold
http://www.bccn-munich.de Bernstein Center München
http://www.uni-muenchen.de LMU Munich
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: Bernstein LMU Neuroscience acoustic axons inhibitory neurons signals spatial voltage

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Registration Open Now: 18th International ESAFORM Conference on Material Forming

28.10.2014 | Event News

Comparing Apples and Oranges? A Colloquium on International Comparative Urban Research

22.10.2014 | Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

 
Latest News

European salamanders and newts vulnerable to fungal disease from Asia

31.10.2014 | Ecology, The Environment and Conservation

NIST 'combs' the atmosphere to measure greenhouse gases

30.10.2014 | Earth Sciences

First detailed picture of a cancer-related cell enzyme in action on a chromosome unit

30.10.2014 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>