Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listen! How nerve cells flexibly adapt to acoustic signals

10.04.2014

Depending on the input signal, neurons generate action potentials either near or far away from the cell body, as researcher from Munich predict. This flexibility would improve our ability to localize sound sources.

In order to process acoustic information with high temporal fidelity, nerve cells may flexibly adapt their mode of operation according to the situation. At low input frequencies, they generate most outgoing action potentials close to the cell body.


A neuron in the brain stem, that processes acoustic information. Depending on the situation, the cell generates action potentials in the axon (thin process) either close to or far from the body.

Felix Felmy, 2014

Following inhibitory or high frequency excitatory signals, the cells produce many action potentials more distantly. This way, they are highly sensitive to the different types of input signals.

These findings have been obtained by a research team headed by Professor Christian Leibold, Professor Benedikt Grothe, and Dr. Felix Felmy from the Bernstein Center and the Bernstein Focus Neurotechnology in Munich and the LMU Munich, who used computer models in their study. The researchers report their results in the latest issue of The Journal of Neuroscience.

Did the bang come from ahead or from the right? In order to localize sound sources, nerve cells in the brain stem evaluate the different arrival times of acoustic signals at the two ears. Being able to detect temporal discrepancies of up to 10 millionths of a second, the neurons have to become excited very quickly. In this process, they change the electrical voltage that prevails on their cell membrane.

If a certain threshold is exceeded, the neurons generate a strong electrical signal—a so-called action potential—which can be transmitted efficiently over long axon distances without weakening. In order to reach the threshold, the input signals are summed up. This is achieved easier, the slower the nerve cells alter their electrical membrane potential.

These requirements—rapid voltage changes for a high temporal resolution of the input signals, and slow voltage changes for an optimal signal integration that is necessary for the generation of an action potential—represent a paradoxical challenge for the nerve cell. “This problem is solved by nature by spatially separating the two processes. While input signals are processed in the cell body and the dendrites, action potentials are generated in the axon, a cell process,” says Leibold, leader of the study. But how sustainable is the spatial separation?

In their study, the researchers measured the axons’ geometry and the threshold of the corresponding cells and then constructed a computer model that allowed them to investigate the effectiveness of this spatial separation. The researchers’ model predicts that depending on the situation, neurons produce action potentials with more or less proximity to the cell body.

For high frequency or inhibitory input signals, the cells will shift the location from the axon’s starting point to more distant regions. In this way, the nerve cells ensure that the various kinds of input signals are optimally processed—and thus allow us to perceive both small and large acoustic arrival time differences well, and thereby localize sounds in space.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 170 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Prof. Dr. Christian Leibold
Computational Neuroscience
Department Biology II
LMU Munich
Großhaderner Straße 2
82152 Planegg-Martinsried (Germany)
Tel: +49 (0)89 2180-74802
Email: leibold@bio.lmu.de

Original publication:
S. Lehnert, M. C. Ford, O. Alexandrova, F. Hellmundth, F. Felmy, B. Grothe & C. Leibold (2014): Action potential generation in an anatomically constrained model of medial superior olive axons. Journal of Neuroscience, 34(15): 5370—5384.

Weitere Informationen:

http://neuro.bio.lmu.de/research_groups/res-leibold_ch personal website Christian Leibold
http://www.bccn-munich.de Bernstein Center München
http://www.uni-muenchen.de LMU Munich
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Further reports about: Bernstein LMU Neuroscience acoustic axons inhibitory neurons signals spatial voltage

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>