Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lipids Help to Fight Leukemia

16.06.2014

T cells use a novel mechanism to fight leukemia.

They may recognize unique lipids produced by cancer cells and kill tumor cells expressing these lipid molecules. A study conducted by researchers at the University of Basel shows that a tumor-associated lipid stimulates specific T cells, which efficiently kill leukemia cells both in vitro and in animal models. The results have been published in the Journal of Experimental Medicine.

Leukemias are cancer diseases affecting blood cells . Acute leukemias prevent development of normal bold cells and thereby are severe life-threatening diseases. Current therapy for acute leukemias is based on chemotherapy that eradicates tumor cells followed by bone-marrow stem cell transplantation that reconstitutes the patient with healthy blood cells. In some cases, leukemia cells survive this treatment and start to re-grow. A major aim of many studies is finding novel and efficient ways to detect and eradicate leukemia cells before a second outbreak of the disease.

More punch against tumor cells

T lymphocytes are major contributors to fight against leukemias. T cells may recognize and become activated by tumor-specific protein antigens in some instances produced in large amounts only by tumor cells. These protein antigens are also called tumor-associated antigens (TAA) and stimulate specific T cells, which in turn kill leukemia cells. However, protein TAA accumulation can be drastically reduced by variant leukemia cells and some TAA may change their structure, thus preventing recognition by T cells and facilitating tumor immune evasion.

Prof. Gennaro De Libero and his team from the Department of Biomedicine at the University of Basel has identified a new approach that might help to make the immune system more efficient in recognizing leukemia cells. His research team is studying T cells that specifically recognize lipid antigens since several years. Together with colleagues in Italy, China and Singapore, the Swiss team has identified a new lipid that accumulates in leukemia cells and that stimulates specific T cell responses. The new lipid methyl-lysophosphatidic acid (mLPA) is very abundant in several forms of human leukemias and is the first example of a lipid TAA.

Therapeutic implications in human leukemia

The published study also shows that it is possible to isolate human T cells that specifically recognize and kill mLPA-expressing leukemia cells in in vitro tests. When these T cells were transplanted into mice, they also displayed great in vivo therapeutic efficacy against leukemia cells.

An important feature of mLPA is that differently from protein TAA, it does not change its structure, and remains abundant in leukemia cells. The Swiss team is now investigating, whether mLPA can be used to target leukemia cells in addition to protein TAA. This type of immunotherapy may be extremely beneficial in preventing relapses of the disease after chemotherapy and bone marrow transplantation. It opens new avenues to novel non-invasive cancer immunotherapies.

Original source
Marco Lepore, Claudia de Lalla, S. Ramanjaneyulu Gundimeda, Heiko Gsellinger, Michela Consonni, Claudio Garavaglia, Sebastiano Sansano, Francesco Piccolo, Andrea Scelfo, Daniel Häussinger, Daniela Montagna, Franco Locatelli, Chiara Bonini, Attilio Bondanza, Alessandra Forcina, Zhiyuan Li, Guanghui Ni, Fabio Ciceri, Paul Jenö, Chengfeng Xia, Lucia Mori, Paolo Dellabona, Giulia Casorati, and Gennaro De Libero
A novel self-lipid antigen targets human T cells against CDc+ leukemias
The Journal of Experimental Medicine (2014) | doi: 10.1084/jem.20140410

Further information
• Prof. Gennaro De Libero, University of Basel, Department of Biomedicine, phone: +41 61 265 23 65, email: gennaro.delibero@unibas.ch
• Dr. Lucia Mori, University of Basel, Department of Biomedicine, phone: +41 61 265 23 27, email: lucia.mori@unibas.ch

Weitere Informationen:

http://www.jem.org/cgi/doi/10.1084/jem.20140410 - Abstract

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: Lipids Medicine chemotherapy diseases leukemia structure

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>