Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light Shed on Koala Evolution

15.12.2009
The world at large knows koalas as cute, cuddly, lovable iconic animals. The evolutionary biologist, on the other hand, will know them as extremely specialized, endangered animals, the evolutionary history of which is extremely poorly understood.

Recently discovered skull material belonging to the extinct koalas Litokoala and Nimiokoala offers a major step forward in understanding koala evolution, according to a new study published in the Journal of Vertebrate Paleontology. The study, which was carried out by a team led by Dr. Julien Louys of the University of New South Wales in Sydney, Australia, focused on the evolution of the masticatory (chewing) apparatus and hearing.

At the time these extinct koalas lived, the Australian continent was wetter and much more forested than it is today. As the continent dried out and the flora became dominated by plants with hard, tough leaves, animals such as koalas had to adapt to this new food resource. The team led by Dr. Louys found that the chewing apparatus of the living koala is much more specialized than its fossil forebears, including adaptations for more powerful bite forces and the ability to shred the tough leaves of the eucalypts that are the mainstay of its diet.

In contrast, analysis of the middle ear suggests that differences between the fossil and living koalas are relatively small. This indicates that the specialized loud and complex vocalizations of living koalas – a trait unusual among marsupials – likely have an ancient origin. The study therefore shows that the chewing apparatus and hearing adaptations in living koalas evolved at different times and under different environmental circumstances, an indication that adaptations, even in the most specialized animals, may have disparate origins and evolve in mosaic fashion.

ABOUT THE SOCIETY OF VERTEBRATE PALEONTOLOGY
Founded in 1940 by thirty-four paleontologists, the Society now has more than 2,300 members representing professionals, students, artists, preparators and others interested in VP. It is organized exclusively for educational and scientific purposes, with the object of advancing the science of vertebrate paleontology.
Journal of Vertebrate Paleontology
The Journal of Vertebrate Paleontology (JVP) is the leading journal of professional vertebrate paleontology and the flagship publication of the Society. It was founded in 1980 by Dr. Jiri Zidek and publishes contributions on all aspects of vertebrate paleontology.

Reference: Louys et al.: Cranial anatomy of Oligo-Miocene koalas (Diprotodontia: Phascolarctidae): stages in the evolution of an extreme leaf-eating specialization.

Journal Web site: Society of Vertebrate Paleontology: http://www.vertpaleo.org

CONTACT INFORMATION
Julien Louys
School of Biological, Earth and Environmental Sciences
The University of New South Wales
Sydney, New South Wales 2052 Australia
j.louys@ljmu.ac.uk
Michael Archer
Faculty of Science
University of New South Wales,
Sydney, New South Wales 2052 Australia
m.archer@unsw.edu.au

| Newswise Science News
Further information:
http://www.vertpaleo.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>