Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Light barrier for fungal toxins - Researchers at the Max Rubner-Institut inhibit the production of toxins

Whether oranges, grapes or strawberries – they are all liable to go mouldy after only a short period in storage. Moulds and their spores are ubiquitous, with virtually no protection possible.

Researchers at the Max Rubner-Institut have developed a process that may not completely kill the moulds, but effectively inhibits their growth: certain wavelengths of visible light disrupt the rhythm of life of many forms of mildew so successfully that they stop producing fungal toxins and in the best-case scenario, stop growing altogether.

Ochratoxins are the toxins of a large group of mildews, which also includes various Penicillium and Aspergillus species. Like most living organisms these moulds have a biological clock that regulates growth and metabolism. At the beginning of the project, Prof. Rolf Geisen, a researcher at the Max Rubner-Institut, suspected that “if we can manage to change the rhythm of this clock, then we can stop the production of toxins.”

Blue light with a wavelength of 450 nanometres has proven to be a particularly effective inhibitor. “We don’t use harmful UV radiation. The blue light is sufficient to destroy 80 per cent of the mould spores,” says Dr. Markus Schmidt-Heydt, a researcher in Prof. Geisen’s team. On the other hand, researchers have also discovered that yellow and green light promotes the growth of the moulds. Moulds are therefore certainly not ‘blind’. They have light receptors for different wavelengths. Unfortunately, however, the varieties of mould have different levels of sensitivity. Typical cereal moulds like the Fusaria react differently to being illuminated, producing higher levels of light protection pigments like carotin, for instance.

This discovery is being intensively tested for its practical application in the context of the EU project “Novel strategies for worldwide reduction of mycotoxins in foods and feed chain” (MycoRed). If the illumination strategy meets its promise in the practical testing stage then this would be a huge step forward in the battle against the spoilage of food in Germany and throughout the world.

Dr. Iris Lehmann | idw
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>