Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leeds researchers reshape the future of drug discovery

19.11.2008
Scientists in Leeds have devised a new way to create the next generation of man-made molecules in a breakthrough that could revolutionise drug development.

Creating new drugs to combat disease and illness requires the completion of a complex 3D jigsaw. The shape of the drug must be right to allow it to bind to a specific disease-related protein and to work effectively, and this shape is determined by the core framework of the molecule.

Now a team from the Astbury Centre for Structural Molecular Biology at the University of Leeds has developed a new approach which allows the creation of molecules with an extraordinarily wide range of molecular frameworks and, hence, shapes. The new molecules are likely to have a wide range of biological functions, which means they could be valuable starting points for the discovery of new drugs.

Says lead researcher Professor Adam Nelson of the University’s School of Chemistry: “Nature has created hundreds of thousands of molecules that have different frameworks and biological purposes, but in the global pursuit of new drugs, chemists from around the world are racing to create new molecules with functions not seen in nature.”

The newly created molecules are being shared with colleagues in the Faculties of Biological Sciences and Medicine and Health to see if specific new molecular frameworks match the requirements of their own research.

Of the 30 million or so synthetic molecules made throughout the history of organic chemistry, many are based on an extremely small number of core frameworks, with the main differences being the groups attached at the periphery. “Making collections of similar molecules is great for optimising a biological property,” says Professor Nelson, “but to put it simply, if researchers need a cube-shaped molecule to target a particular protein, they may well find that they can only choose from libraries stocked with millions of sphere-shaped ones.”

Co-researcher Dr Stuart Warriner added: “Making molecules is a bit like making something using lego bricks. Up until now we’ve only really become good at making, say, the equivalent of a lego car or train. There might be 30 million synthetic molecules registered, but there’s probably several million of these that are the equivalent of lego cars – they may have different wheels and wing mirrors, but their fundamental shape is essentially the same. We’ve not really scratched the surface of the possible structures that could be made. This lack of variety in the core shape of molecules may well limit the range of proteins that medicinal chemists can target.”

The Leeds approach makes use of ‘metathesis’, a reaction that won the 2005 Nobel Prize in Chemistry.

Explains Professor Nelson: “We take simple building blocks, a bit like the amino acids that make up peptides, and we assemble them in different sequences using three simple reactions to link them together in a chain. The key difference is that we then add the catalyst which initiates a ‘scaffold reprogramming reaction’, which ripples down the chemical chain and restitches the molecule together in a completely different way each time.

“It’s a bit like a molecular square dance, where atoms in the molecule swap partners - and the exciting thing is that we can change the building blocks again and again in different combinations as a really powerful way to vary the core frameworks that result. The potential of this process is enormous,” he says.

The team from Leeds have used their approach to prepare molecules with 84 distinct molecular frameworks – and about two-thirds of the frameworks are unprecedented in the history of organic chemistry. The work is a huge leap forward from landmark research reported in 2003, which resulted in the creation of six frameworks in a single process. It is also a significant improvement on more recent research in which around 30 frameworks were created using a complex combination of different reactions.

The team has deliberately chosen to prepare molecules with structural features that are similar to those found in natural products: “For example we know that putting oxygen atoms on every other carbon atom is something that frequently occurs in nature and has evolved for a useful purpose” says Professor Nelson. “We’re not aiming to improve on existing natural products or drugs - we want to create molecules with functions that nature’s not got round to making yet, or something that would only evolve naturally with new selection pressures that would make it beneficial for the organism.”

Work has already begun across campus to screen the molecules, which are already yielding “promising” results. The team are considering patenting molecules with novel biological functions.

The research is funded both through Professor Nelson’s Engineering and Physical Sciences Research Council (EPSRC) Advanced Research Fellowship and by the Wellcome Trust.

The research, published online today, has earned the paper VIP status in the leading Chemistry journal Angewandte Chemie.

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>