Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kick-off of EU-Project NanoOnSpect: Cost reduction by online characterisation of nanocomposites

02.05.2011
Using various sensor-based measurement and characterisation methods, an online measurement unit will be developed for compounding processes. The data obtained will be integrated into the database of an expert system and further processed in an artificial neural network. Information from this network will be fed back into the processing equipment, and the manufacturing process will be adapted as necessary.

The physical properties of nanocomposites depend significantly on the shape and distribution of the particles in the matrix. Measurement of the resulting mechanical and electrical properties is currently only possible after the material has been produced. The manufacturing process and parameters also have a significant influence on the properties of the composite.

A "trial and error" approach to material development is often adopted: using different process parameters a variety of compounds and composites are manufactured and subsequently analysed. This approach can be very expensive, particularly where highly functional nanoparticles are used. An additional problem in the nanocomposites sector is the production of reject material, which, due to the high quality requirements, can be up to 100%.

The European collaborative project "NanoOnSpect" aims to solve these problems in the production of polymer nanocomposites:

Using various sensor-based measurement and characterisation methods, an online measurement unit will be developed for compounding processes. The data obtained will be integrated into the database of an expert system and further processed in an artificial neural network. Information from this network will be fed back into the processing equipment, and the manufacturing process will be adapted as necessary. This will allow processes such as the formation of a nanoparticle network or the dispersion of particles in the matrix to be optimised during production, and the melt to be characterised before it exits the processing equipment. A new compounding technology with a much broader spectrum in the area of particle dispersion will help ensure that nanocomposites with significantly improved properties and lower development costs will enter the market from 2015 onwards.

Coordinated by the company Gneuß Kunststofftechnik and the Fraunhofer Institute for Chemical Technology in Germany, seven small and medium-sized enterprises, two industrial associations and three research institutions will be working to implement the new technology.

NanoOnSpect has received funding from the European Community's Seventh Framework Programme (FP7-NMP-2010-SME-4) under grant agreement number 263406.

Key data:
NanoOnSpect: 263406-2 NanoOnSpect CP-TP FP7-NMP-2010-SME-4
Budget: 4.7 million €
Duration: 01.04.2011 bis 31.03. 2015
Partners:
Fraunhofer Institute for Chemical Technology (ICT)
Asociación de Investigación de Materiales Plásticos y Conexas AIMPLAS
Centre de Recerca i Investigació de Catalunya CRIC
Gneuß Kunststofftechnik GmbH
FOS Messtechnik GmbH
Hukseflux Thermal Sensors B.V.
HBH Microwave GmbH
Nexxus Channel srl
Addiplast
C.M.B. B.V. Colorex
European Plastics Converters
Verband Technische Kunststoff-Produkte e.V.

Carolyn Fisher | Fraunhofer-Institut
Further information:
http://www.ict.fraunhofer.de

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>