Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key to the success of invasive ants discovered

21.01.2009
An international team of researchers, with the participation of Universitat Autònoma de Barcelona and CREAF, has achieved to resolve fundamental questions related to the behaviour of ants.

Researchers discovered how some species that successfully invade large extensions of land have an unusual way of doing so: they cooperate with other colonies to form a supercolony. Researchers alert that a plague of this type of ant could turn into a global problem. The research, the first of its kind, has been published in the journal PLoS ONE.

Ants are excellent invaders: five of the one hundred most invasive species in the world are ants. While common ant colonies compete with neighbouring colonies for resources and territory, invasive ants abandon all aggressiveness between colonies and work together to form enormous supercolonies consisting in thousands of interconnected nests.

However, the origin of these species' characteristic traits which provide them with their extraordinary invasiveness is still a mystery for scientists, given that they only reveal their destructive potential following a long, inconspicuous lag phase. As a result, many fundamental questions about the origin of their invasive behavioural patterns are still unanswered: Are they originally present in the colonies, before they begin an invasion? When does this behaviour manifest itself? Are these traits the result of mutations in a small sector of the original population? Or do they develop when populations grow and adapt to a new habitat?

Researchers at la UAB and CREAF participated in the first large-scale interdisciplinary study on the behaviour, morphology, population genetics, chemical recognition and parasite load of the invasive ant species Lasius neglectus and its non-invasive sister species Lasius turcicus. Both species, in all probability, originated in Asia Minor and their common genetic origin was confirmed in 2004.

Lasius neglectus, identified for the first time in 1990, is currently expanding throughout Europe - it can now be found in more than 100 locations - and occupies large extensions of parks and gardens. These invasive ants eradicate most native ants and other insect populations, damage trees, and in many cases cause economic and social problems by invading people's homes. They are similar in appearance to the common black garden ant, but are smaller and lighter in colour and can work up to nine times faster than their common garden counterparts. The species proliferates in mild climates of Europe and Asia, but it is also the first type of ant that can invade colder areas which until had not been affected by more exotic plagues. The northern areas affected until now are Jena in Germany, Ghent in Belgium and Warsaw in Poland.

This study has been able to answer some of the questions on the biology of this invasive behaviour. One of the key behavioural elements of these ants consists in forming interconnected nests, with many queens mating within existing colonies instead of starting a new one. Scientists have been able to demonstrate that the conditions needed to develop this invasiveness are already found in original populations. The study also reveals that the invasiveness is only fully expressed once the ants have escaped their natural enemies, such as parasites and pathogens. This happens when they travel to remote areas where local enemies have not had time to adapt and respond to these newcomers. In addition, researchers detected the same biological traits of invasiveness in the sister species Lasius turcicus, but which until now have not manifested themselves.

This data implies that many of the more than 12,500 ant species known to man can become a serious problem if adequate measures are not taken. The study warns that invasive ant populations such as the Lasius neglectus can become a problem of global dimensions.

The research, published in the December edition of the scientific journal PLoS ONE was carried out by a team of twenty researchers, including Dr Xavier Espadaler, professor of the UAB Department of Animal Biology, Plant Biology and Ecology and researcher at the Centre for Ecological Research and Forestry Applications (CREAF).

Octavi López Coronado | alfa
Further information:
http://www.uab.cat/uabdivulga

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>