Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key protein reveals secret of stem cell pluripotency

06.09.2011
Published in the August issue of Stem Cells, researchers at the RIKEN Omics Science Center found a way for future advances in regenerative medicine and more effective culturing techniques for human pluripotent stem cells.

A protein that helps maintain mouse stem cell pluripotency has been identified by researchers at the RIKEN Omics Science Center. The finding, published in the August issue of Stem Cells (first published online July 26, 2011), points the way to advances in regenerative medicine and more effective culturing techniques for human pluripotent stem cells.

Through their capacity to differentiate into any other type of cell, embryonic stem cells (ES cells) and induced-pluripotent stem cells (iPS cells) promise a new era of cell-based treatments for a wide range of conditions and diseases. Cultivating such cells, however, commonly relies on the use of so-called gfeederh cells to maintain pluripotency in cell culture conditions. Feeder cells keep stem cells in their undifferentiated state by releasing nutrients into the culture medium, but they have the potential to introduce contamination which, in humans, can lead to serious health risks.

Previous research has shown that mouse pluripotent stem cells can be cultured without feeder cells through the addition of a cytokine called Leukemia Inhibitory Factor (LIF) to the culture media (gfeeder-freeh culture). LIF is secreted by mouse feeder cells and activates signal pathways reinforcing a stem cell regulatory network. The researchers discovered early in their investigation, however, that the amount of LIF secreted from feeder cells is much less than the amount needed to maintain pluripotency in feeder-free conditions. This points to other, as-of-yet unknown contributing factors.

To clarify these factors, the research group analyzed differences in gene expression between mouse iPS cells cultured on feeder cells and those cultured in feeder-free (LIF treated) conditions. Their results revealed 17 genes whose expression level is higher in feeder@conditions. To test for possible effects on pluripotency, they then selected 7 chemokines (small proteins secreted by cells) from among these candidates and overexpressed them in iPS cells grown in feeder-free conditions. They found that one chemokine in particular, CC chemokine ligand 2 (CCL2), enhances the expression of key pluripotent genes via activation of a well-known signal pathway known as Jak/Stat3.

While CCL2 is known for its role in recruiting certain cells to sites of infection or inflammation, the current research is the first to demonstrate that it also helps maintain iPS cell pluripotency. The findings also offer broader insights applicable to the cultivation of human iPS/ES cells, setting the groundwork for advances in regenerative medicine.

For more information, please contact:

Harukazu Suzuki
LSA Technology Development Unit
RIKEN Omics Science Center
Tel: +81-(0)45-503-9222 / Fax: +81-(0)45-503-9216
Yokohama Planning Section
RIKEN Yokohama Research Promotion Division
Tel: +81-(0)45-503-9117 / Fax: +81-(0)45-503-9113
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
Reach us on Twitter: @rikenresearch
Reference
Yuki Hasegawa, Naoko Takahashi, Alistair R. R. Forrest, Jay W. Shin, Yohei Kinoshita, Harukazu Suzuki and Yoshihide Hayashizaki. "CC Chemokine Ligand 2 and Leukemia Inhibitory Factor Cooperatively Promote Pluripotency in Mouse Induced Pluripotent Cells." Stem Cells, 2011, DOI: 10.1002/stem.673

About RIKEN

RIKEN is Japanfs flagship research institute devoted to basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKENfs advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

About the Omics Science Center

Omics is the comprehensive study of molecules in living organisms. The complete sequencing of genomes (the complete set of genes in an organism) has enabled rapid developments in the collection and analysis of various types of comprehensive molecular data such as transcriptomes (the complete set of gene expression data) and proteomes (the complete set of intracellular proteins). Fundamental omics research aims to link these omics data to molecular networks and pathways in order to advance the understanding of biological phenomena as systems at the molecular level.

Here at the RIKEN Omics Science Center, we are developing a versatile analysis system, called the gLife Science Accelerator (LSA)h, with the objective of advancing omics research. LSA is a multi-purpose, large-scale analysis system that rapidly analyzes molecular networks. It collects various genome-wide data at high throughput from cells and other biological materials, comprehensively analyzes experimental data, and thereby aims to elucidate the molecular networks of the sample. The term gacceleratorh was chosen to emphasize the strong supporting role that this system will play in supporting and accelerating life science research worldwide.

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>