Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key protein may explain the anti-aging and anti-cancer benefits of dietary restriction

26.05.2009
Discovery gives scientists new targets for developing and testing drugs that could extend the healthy years of life

A protein that plays a key role in tumor formation, oxygen metabolism and inflammation is involved in a pathway that extends lifespan by dietary restriction.

The finding, which appears in the May 22, 2009 edition of the on-line journal PLoS Genetics, provides a new understanding of how dietary restriction contributes to longevity and cancer prevention and gives scientists new targets for developing and testing drugs that could extend the healthy years of life.

The protein is HIF-1 (hypoxia-inducible factor 1). It helps cells survive by "turning on" when oxygen levels are low. HIF-1 is also active in some forms of human cancer. HIF-1 overexpression is frequently detected in solid tumors; inhibition of HIF-1 has been proved to be an efficient way to prevent cancer growth. Now, scientists at the Buck Institute for Age Research have shown that HIF-1 is also a key player in dietary restriction. HIF-1 is involved in a molecular pathway known to regulate cell growth and metabolism in response to nutrients and growth factors.

"Previous studies on HIF-1 have mainly focused on its roles in oxygen metabolism and tumor development", said Buck faculty member Pankaj Kapahi, PhD, lead author of the study.

Kapahi says the study encourages the investigation of HIF-1 in nutrient sensing pathways. "The data in this study also points to HIF-1 as a likely target for regulating the protective effects of dietary restriction in mammals," said Kapahi.

"Dietary restriction is one of the most robust methods for extending lifespan and delaying age-related disease among various species."

Kapahi says the molecular mechanisms involved in how dietary restriction slows cancer and extends lifespan have been largely unknown. "This study gets us closer to understanding that process and gives us better targets for both designing and testing drugs which could mimic the effects of dietary restriction in humans," said Kapahi.

The research involved nematode worms that were genetically altered to both under and over-express HIF-1. The animals, which are the most-often used model to study aging, were fed different diets. Animals that were designed to over-express HIF-1 did not get the benefit of lifespan extension even though their diets were restricted. Animals that under-expressed HIF-1 lived longer, even when they had a nutrient-rich diet. Furthermore, it was found that the lifespan extension resulting from dietary restriction required activity in signaling pathways in the endoplasmic reticulum, the part of the cell involved in processing and the proper folding of proteins. This finding supports the theory that aging stems from the effects of misfolded proteins and opens up a rich area of investigation to examine the mechanisms by which stress in the endoplasmic reticulum affects lifespan.

Contributors to this work:

Other Buck Institute researchers involved in the study include Di Chen, and Emma Lynn Thomas. The work was supported by the Ellison Medical Foundation, the Larry L. Hillblom Foundation, the American Federation for Aging Research, the Bill and Rita Haynes Foundation, and the National Institute on Aging.

About the Buck Institute:

The Buck Institute is the only freestanding institute in the United States that is devoted solely to basic research on aging and age-associated disease. The Institute is an independent nonprofit organization dedicated to extending the healthspan, the healthy years of each individual's life. The National Institute of Aging designated the Buck a "Nathan Shock Center of Excellence in the Basic Biology of Aging," one of just five centers in the country. Buck Institute scientists work in an innovative, interdisciplinary setting to understand the mechanisms of aging and to discover new ways of detecting, preventing and treating conditions such as Alzheimer's and Parkinson's disease, cancer and stroke. Collaborative research at the Institute is supported by new developments in genomics, proteomics and bioinformatics technology. For more information: www.buckinstitute.org.

Kris Rebillot | EurekAlert!
Further information:
http://www.buckinstitute.org

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>