Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key piece of puzzle sheds light on function of ribosomes

13.01.2010
When ribosomes produce protein in all living cells, they do so through a chemical reaction that happens so fast that scientists have been puzzled. Using large quantum mechanical calculations of the reaction center of the ribosome, researchers at Uppsala University in Sweden can now provide the first detailed picture of the reaction. The findings are published in the Web edition of Proceedings of the National Academy of Sciences, PNAS.

It was previously known how the chemical reaction goes about adding amino acids to the growing protein. Both computer simulations and x-ray crystallographic experiments have identified a hydrogen bonding network that appears to be the main explanation for the high speed of the reaction. What is especially remarkable is the presence of a couple of "trapped" water molecules seem to be the only parts of the ribosome that are in contact with the reacting chemical groups.

Doctoral candidate Göran Wallin and Professor Johan Åqvist at the Department of Cell and Molecular Biology at Uppsala University have carried out large-scale calculations of the ribosome reaction center, and this has enabled them to monitor the changes electronic structure during the reaction. With about a thousand quantum mechanical optimizations, they have succeeded in establishing exactly what the highest point of the energy surface looks like, the point that determines the speed of the reaction.

"Our calculations provide a detailed picture of the reaction and show that the two water molecules play a central role in ribosome catalysis. One of the molecules participates directly in the reaction by 'shuffling' protons around, while the other one helps increase the speed of the reaction," explains Johan Åqvist.

The findings surprisingly show that it is just a few components in the ribosome's reaction center that induce the catalytic effect, whereas the surrounding structure mainly holds them in place.

"An exciting question for future research is whether these components are a vestige of a primordial and much simpler ribosome," says Johan Åqvist.

Johan Åqvist | EurekAlert!
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>