Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key piece of puzzle sheds light on function of ribosomes

13.01.2010
When ribosomes produce protein in all living cells, they do so through a chemical reaction that happens so fast that scientists have been puzzled. Using large quantum mechanical calculations of the reaction center of the ribosome, researchers at Uppsala University in Sweden can now provide the first detailed picture of the reaction. The findings are published in the Web edition of Proceedings of the National Academy of Sciences, PNAS.

It was previously known how the chemical reaction goes about adding amino acids to the growing protein. Both computer simulations and x-ray crystallographic experiments have identified a hydrogen bonding network that appears to be the main explanation for the high speed of the reaction. What is especially remarkable is the presence of a couple of "trapped" water molecules seem to be the only parts of the ribosome that are in contact with the reacting chemical groups.

Doctoral candidate Göran Wallin and Professor Johan Åqvist at the Department of Cell and Molecular Biology at Uppsala University have carried out large-scale calculations of the ribosome reaction center, and this has enabled them to monitor the changes electronic structure during the reaction. With about a thousand quantum mechanical optimizations, they have succeeded in establishing exactly what the highest point of the energy surface looks like, the point that determines the speed of the reaction.

"Our calculations provide a detailed picture of the reaction and show that the two water molecules play a central role in ribosome catalysis. One of the molecules participates directly in the reaction by 'shuffling' protons around, while the other one helps increase the speed of the reaction," explains Johan Åqvist.

The findings surprisingly show that it is just a few components in the ribosome's reaction center that induce the catalytic effect, whereas the surrounding structure mainly holds them in place.

"An exciting question for future research is whether these components are a vestige of a primordial and much simpler ribosome," says Johan Åqvist.

Johan Åqvist | EurekAlert!
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>