Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key piece of puzzle sheds light on function of ribosomes

13.01.2010
When ribosomes produce protein in all living cells, they do so through a chemical reaction that happens so fast that scientists have been puzzled. Using large quantum mechanical calculations of the reaction center of the ribosome, researchers at Uppsala University in Sweden can now provide the first detailed picture of the reaction. The findings are published in the Web edition of Proceedings of the National Academy of Sciences, PNAS.

It was previously known how the chemical reaction goes about adding amino acids to the growing protein. Both computer simulations and x-ray crystallographic experiments have identified a hydrogen bonding network that appears to be the main explanation for the high speed of the reaction. What is especially remarkable is the presence of a couple of "trapped" water molecules seem to be the only parts of the ribosome that are in contact with the reacting chemical groups.

Doctoral candidate Göran Wallin and Professor Johan Åqvist at the Department of Cell and Molecular Biology at Uppsala University have carried out large-scale calculations of the ribosome reaction center, and this has enabled them to monitor the changes electronic structure during the reaction. With about a thousand quantum mechanical optimizations, they have succeeded in establishing exactly what the highest point of the energy surface looks like, the point that determines the speed of the reaction.

"Our calculations provide a detailed picture of the reaction and show that the two water molecules play a central role in ribosome catalysis. One of the molecules participates directly in the reaction by 'shuffling' protons around, while the other one helps increase the speed of the reaction," explains Johan Åqvist.

The findings surprisingly show that it is just a few components in the ribosome's reaction center that induce the catalytic effect, whereas the surrounding structure mainly holds them in place.

"An exciting question for future research is whether these components are a vestige of a primordial and much simpler ribosome," says Johan Åqvist.

Johan Åqvist | EurekAlert!
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>