Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key Mechanism for the Proliferation of Epstein-Barr Virus Discovered

14.01.2010
Scientists of Helmholtz Zentrum München have elucidated a crucial mechanism in the lytic cycle of Epstein-Barr virus. A team of researchers led by Professor Wolfgang Hammerschmidt identified the function of a protein which plays a critical role in the proliferation of the virus. The Epstein-Barr virus can induce cancer. The findings, published in the current issue of the renowned journal PNAS, represent a major step forward in understanding tumor development.

The Epstein-Barr virus (EBV), a virus of the herpes family, has two distinct life phases: After infecting a cell it first goes into a resting phase. Under certain circumstances the virus can become active – and then induces tumor growth or promotes its synthesis in the cell. Especially in patients with weakened immune systems, EBV can cause its host cells to divide uncontrollably – causing a tumor to develop.

The causes for the transition of EBV from the quiescent phase to an active mode – particularly with respect to the responsible factors and to how the molecular mechanisms function – have until now remained elusive. With their findings, the scientists at Helmholtz Zentrum München have discovered how the virus terminates latency and activates its synthesis in the infected cells.

Professor Wolfgang Hammerschmidt, head of the Department of Gene Vectors at Helmholtz Zentrum München, explained: "We have now identified the crucial function of the viral BZLF1 protein: It activates the genes of EBV, which are essential for the proliferation of virus particles." About 70 different genes are switched off during the latent phase because certain DNA segments are chemically modified: Some DNA building blocks carry methyl groups. They are a kind of stop signal for the cell apparatus, so that these genes cannot be converted into protein.

“BZLF1 can detect these methylation patterns in the DNA,” said Markus Kalla, lead author of the study. With its DNA binding domain, the protein binds directly to the methylated DNA sequence. A second domain of BZLF1 is responsible for the reactivation of the gene. “Such a mechanism was not known before,” Wolfgang Hammerschmidt said. Previous research assumed that the methyl groups had to be removed from the DNA building blocks before the transcription factors could bind to the regulatory DNA sequence and thus activate the gene.

The researchers’ findings indicate that BZLF1 avoids this hurdle. Accordingly, BZLF1 appears to be essential for establishing and maintaining latency, but also for escaping from it.

During viral synthesis a large number of new particles are usually formed within the cell. To achieve this, viruses use large portions of the cell apparatus, in particular specific proteins and factors. After progeny synthesis the new viruses are released – researchers speak of a lytic cycle. The disadvantage: the viruses thus attract the attention of the immune system, which then fights against the pathogen and destroys the cell supporting viral synthesis.

However, the Epstein-Barr virus uses another strategy. Instead of putting all of its energy into immediate synthesis of progeny in the infected cell, it goes into a resting phase following the infection and thus prevents a reaction of the immune system. The virus infects cells of the immune system - the so-called B cells - first inserting its DNA into their cell nucleus. Whereas most viruses immediately start their lytic proliferation cycle and thus use the cell apparatus to replicate the DNA and to generate important structural proteins from the genes, EBV drives transformation of merely a few genes from the cell into proteins. These so-called latent genes are important for the quiescent phase: They see to it that the DNA of the Epstein-Barr virus remains stable in the cell nucleus while the cell itself proliferates. This seemingly peaceful co-existence ends when the virus goes into the lytic phase or induces tumor growth.

These findings published in PNAS by Wolfgang Hammerschmidt and his colleagues constitute an important step for a better understanding of the role of EBV in tumor growth.

Further information
Press Contact:
Sven Winkler
Head, Communications Department
Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
Phone: +49 (0) 89 3187 - 3946, Fax +49 (0) 89 3187 - 3324, e-mail: presse@helmholtz-muenchen.de
Original Publication:
Kalla, M, Schmeinck, A, Bergbauer, M, Pich, D, Hammerschmidt, W: AP-1 homolog BZLF1 of Epstein–Barr virus has two essential functions dependent on the epigenetic state of the viral genome. PNAS - Online Publication (DOI 10.1073/pnas.0911948107)

The Department of Gene Vectors of Helmholtz Zentrum München is dedicated to the molecular biological analysis of a human herpes virus, Epstein-Barr virus (EBV), and the virus’ interaction with human target cells. EBV is a pathogen which constitutes a model system for different aspects of human herpes viral infection. EBV was the first human virus to be characterized as tumor virus and is therefore considered a carcinogenic agent according to the international WHO classification. The virus is associated with a number of tumors such as nasopharyngeal carcinoma, stomach cancer, Burkitt’s and Hodgkin’s lymphoma and other human lymphomas, which most often occur in immune-suppressed patients.

Helmholtz Zentrum München is the German Research Center for Environmental Health. As leading center oriented toward Environmental Health, it focuses on chronic and complex diseases which develop from the interaction of environmental factors and individual genetic disposition. Helmholtz Zentrum München has around 1700 staff members. The head office of the center is located in Neuherberg to the north of Munich on a 50-hectare research campus. Helmholtz Zentrum München belongs to the Helmholtz Association, Germany’s largest research organization, a community of 16 scientific-technical and medical-biological research centers with a total of 26,500 staff members.

Sven Winkler | EurekAlert!
Further information:
http://www.helmholtz-muenchen.de

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>