Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key gene found responsible for chronic inflammation, accelerated aging and cancer

25.05.2012
Researchers at NYU School of Medicine have, for the first time, identified a single gene that simultaneously controls inflammation, accelerated aging and cancer.

"This was certainly an unexpected finding," said principal investigator Robert J. Schneider, PhD, the Albert Sabin Professor of Molecular Pathogenesis, associate director for translational research and co-director of the Breast Cancer Program at NYU Langone Medical Center.

"It is rather uncommon for one gene to have two very different and very significant functions that tie together control of aging and inflammation. The two, if not regulated properly, can eventually lead to cancer development. It's an exciting scientific find."

The study, funded by the National Institutes of Health, appears online ahead of print today in Molecular Cell and is scheduled for the July 13 print issue.

For decades, the scientific community has known that inflammation, accelerated aging and cancer are somehow intertwined, but the connection between them has remained largely a mystery, Dr. Schneider said. What was known, due in part to past studies by Schneider and his team, was that a gene called AUF1 controls inflammation by turning off the inflammatory response to stop the onset of septic shock. But this finding, while significant, did not explain a connection to accelerated aging and cancer.

When the researchers deleted the AUF1 gene, accelerated aging occurred, so they continued to focus their research efforts on the gene. Now, more than a decade in the making, the mystery surrounding the connection between inflammation, advanced aging and cancer is finally being unraveled.

The current study reveals that AUF1, a family of four related genes, not only controls the inflammatory response, but also maintains the integrity of chromosomes by activating the enzyme telomerase to repair the ends of chromosomes, thereby simultaneously reducing inflammation, preventing rapid aging and the development of cancer, Dr. Schneider explained.

"AUF1 is a medical and scientific trinity," Dr. Schneider said. "Nature has designed a way to simultaneously turn off harmful inflammation and repair our chromosomes, thereby suppressing aging at the cellular level and in the whole animal."

With this new information, Dr. Schneider and colleagues are examining human populations for specific types of genetic alterations in the AUF1 gene that are associated with the co-development of certain immune diseases, increased rates of aging and higher cancer incidence in individuals to determine exactly how the alterations manifest and present themselves clinically.

About NYU School of Medicine:
NYU School of Medicine is one of the nation's preeminent academic institutions dedicated to achieving world class medical educational excellence. For 170 years, NYU School of Medicine has trained thousands of physicians and scientists who have helped to shape the course of medical history and enrich the lives of countless people. An integral part of NYU Langone Medical Center, the School of Medicine at its core is committed to improving the human condition through medical education, scientific research and direct patient care. The School also maintains academic affiliations with area hospitals, including Bellevue Hospital, one of the nation's finest municipal hospitals where its students, residents and faculty provide the clinical and emergency care to New York City's diverse population, which enhances the scope and quality of their medical education and training. Additional information about the NYU School of Medicine is available at http://school.med.nyu.edu/.

Jessica Guenzel | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>