Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kentucky researchers find a key to plant disease resistance

29.03.2011
University of Kentucky plant pathologists recently discovered a metabolite that plays a critical role early on in the ability of plants, animals, humans and one-celled microorganisms to fend off a wide range of pathogens at the cellular level, which is known as systemic immunity. This mode of resistance has been known for more than 100 years, but the key events that stimulate that resistance have remained a mystery.

The findings of the UK College of Agriculture researchers, led by Pradeep Kachroo and Aardra Kachroo, were published online in Nature Genetics March 27. Researchers from the UK Department of Statistics and Washington State University also contributed to the article.

"If you can generate systemic immunity, you can have great benefits in disease resistance," Pradeep Kachroo said. "It is particularly gratifying to be able to describe a mechanism for a type of immunity; pioneering studies were incidentally carried out by our own emeritus faculty, Joe Kuc."

Using soybeans and Arabidopsis, a model laboratory plant, the scientists were able to identify the metabolite glycerol-3-phosphate as a key mobile regulator of systemic immunity. A metabolite is a substance produced in the body through normal metabolic processes. The glycerol-3-phosphate transforms into an unknown compound and uses a protein, called DIR1 to signal systemic immunity. Scientists already identified the protein as a necessary component to trigger systemic immunity.

"The metabolite and protein are dependent on each other to transport immunity from one location in the plant tissue to the other," Pradeep Kachroo said. "Metabolite levels increase in plant tissues after the plant has been inoculated by a pathogen."

While the research was conducted on plants, Pradeep Kachroo said all organisms have a similar process of triggering systemic immunity.

"The metabolite is a highly conserved compound in all species across the board," Pradeep Kachroo said. "Another great thing is increased levels of this metabolite do not affect plant productivity, unlike other known inducers of systemic immunity."

He said the metabolite could be an effective tool to control plant diseases and enhance pathogen tolerance in plants.

In 2008, these UK plant pathologists discovered that the same metabolite was a key component in organisms' basal resistance, which allows organisms to have strong immune systems. They wondered whether there was a connection between the metabolite and systemic immunity, which led them to their current research.

Their research was funded by the National Science Foundation's Division of Integrative Organismal Systems. The plant pathologists will continue to study the process that induces systemic immunity.

"We want to know how glycerol-3-phosphate is metabolized in plants and identify various compounds derived from glycerol-3-phosphate," Pradeep Kachroo said. "We also want to know how the metabolite relates other molecules known to be important for systemic immunity."

Contact: Pradeep Kachroo, 859-257-7445 or Aardra Kachroo, 859-257-7445, ext. 81292

Katie Pratt | EurekAlert!
Further information:
http://www.uky.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>