Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping the immune system on track

10.10.2011
Specialized motor proteins help control immune activation by physically hauling clusters of signaling receptors to a central site for eventual disposal

Specialized immune cells called T cells can recognize threats and induce immune responses through T cell receptors (TCRs), but these receptors do not act alone. Multiple receptors gather together at the cell surface to cooperatively switch on T cells. “The minimum unit for triggering T lymphocyte activation is known as the TCR microcluster [TCR-MC],” explains Takashi Saito of the RIKEN Research Center for Allergy and Immunology in Yokohama. “These are the key structure for T cells to recognize antigens and become activated.”


The immune system in action
Copyright : TimVickers

At the interface between T cells and the antigen-presenting immune cells that switch them on, TCR-MCs accumulate at a structure called the central supramolecular activation cluster (cSMAC). Now, research from Saito and colleagues has revealed unexpected insights into how this accumulation occurs.

Saito and his team were the first to characterize TCR-MC function2, but they were uncertain how these clusters make their way from the periphery to the core of the cSMAC. To understand this phenomenon, they performed a series of experiments in which T cells were placed on an artificial lipid layer that mimics the membrane of an antigen-presenting cell, allowing them to microscopically visualize activation-related events at the T cell surface.

Cellular structures are reinforced by protein fibers that form a network called the cytoskeleton, and Saito and colleagues revealed that TCR-MC movement is mediated by dynein, a ‘motor protein’ that shuttles cargos along these fibers. “We knew lymphocyte activation was regulated through the cytoskeleton,” he says. “But it was most surprising that TCR complexes are physically associated with dynein and that their movement is mediated by assembling with this complex.”

Upon TCR activation, the dynein-facilitated movement drags TCR-MCs laterally along the surface of the membrane towards the cSMAC, a function previously unseen for this motor protein. Pharmacological inhibition of dynein strongly impaired migration of TCR-MCs and undermined their assembly within the cSMAC, as did the selective reduction of a key subunit of the dynein complex.

Intriguingly, the same treatments that impaired TCR-MC migration also enhanced T cell activation. Saito and colleagues therefore concluded that once these clusters reach the center of the cSMAC, they become internalized within the cell and thereby taken out of action. Saito hopes to exploit this effect by learning how the TCR-MC-dynein complex is assembled. “It would be ideal if we had a specific inhibitor of this assembly,” he says, “which could lead to stronger immune status with enhanced activation of T cells.”

The corresponding author for this highlight is based at the Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Allergy RIKEN T cells TCR TCR-MC cell surface immune cell motor protein

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>