Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State researchers studying link between climate change and cattle nutritional stress

18.11.2009
Kansas State University's Joseph Craine, research assistant professor in the Division of Biology, and KC Olson, associate professor in animal sciences and industry, have teamed up with some other scientists from across the United States to look into the possible effects of climate change on cattle nutrition.

Comparing grasslands and pastureland in different regions in the U.S., the study, published in Global Change Biology, discusses data from more than 21,000 different fecal samples collected during a 14-year period and analyzed at the Texas A&M University Grazingland Animal Nutrition Lab for nutritional content.

"Owing to the complex interactions among climate, plants, cattle grazing and land management practices, the impacts of climate change on cattle have been hard to predict," said Craine, principal investigator for the project.

The lab measured the amount of crude protein and digestible organic matter retained by cattle in the different regions. The pattern of forage quality observed across regions suggests that a warmer climate would limit protein availability to grazing animals, Craine said.

"This study assumes nothing about patterns of future climate change; it's just a what if," Olson said. "What if there was significant atmosphere enrichment of carbon dioxide? What would it likely do to plant phenology? If there is atmospheric carbon dioxide enrichment, the length of time between when a plant begins to grow and when it reaches physiological maturity may be condensed."

Currently, cattle obtain more than 80 percent of their energy from rangeland, pastureland and other sources of roughage. With projected scenarios of climate warming, plant protein concentrations will diminish in the future. If weight gain isn't to drop, ranchers are likely going to have to manage their herds differently or provide supplemental protein, Craine said.

Any future increases in precipitation would be unlikely to compensate for the declines in forage quality that accompany projected temperature increases. As a result, cattle are likely to experience greater nutritional stress in the future if these geographic patterns hold as a actual example of future climates, Craine said.

"The trickle-down to the average person is essentially thinking ahead of time of what the consequences are going to be for the climate change scenarios that we are looking at and how ranchers are going to change management practices," Craine said.

"In my opinion these are fully manageable changes," Olson said. "They are small, and being prepared just in case it does happen will allow us to adapt our management to what will essentially be a shorter window of high-quality grazing."

Additional investigators on the project include Andrew Elmore at the University of Maryland's Center for Environmental Science and Doug Tolleson from the School of Natural Resources at the University of Arizona, along with the assistance of Texas A&M's Grazingland Animal Nutrition Lab.

Joseph Craine | Joseph Craine
Further information:
http://www.k-state.edu

Further reports about: Craine K-State Nutrition Olson carbon dioxide specimen processing synthetic biology

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>