Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State researchers studying link between climate change and cattle nutritional stress

18.11.2009
Kansas State University's Joseph Craine, research assistant professor in the Division of Biology, and KC Olson, associate professor in animal sciences and industry, have teamed up with some other scientists from across the United States to look into the possible effects of climate change on cattle nutrition.

Comparing grasslands and pastureland in different regions in the U.S., the study, published in Global Change Biology, discusses data from more than 21,000 different fecal samples collected during a 14-year period and analyzed at the Texas A&M University Grazingland Animal Nutrition Lab for nutritional content.

"Owing to the complex interactions among climate, plants, cattle grazing and land management practices, the impacts of climate change on cattle have been hard to predict," said Craine, principal investigator for the project.

The lab measured the amount of crude protein and digestible organic matter retained by cattle in the different regions. The pattern of forage quality observed across regions suggests that a warmer climate would limit protein availability to grazing animals, Craine said.

"This study assumes nothing about patterns of future climate change; it's just a what if," Olson said. "What if there was significant atmosphere enrichment of carbon dioxide? What would it likely do to plant phenology? If there is atmospheric carbon dioxide enrichment, the length of time between when a plant begins to grow and when it reaches physiological maturity may be condensed."

Currently, cattle obtain more than 80 percent of their energy from rangeland, pastureland and other sources of roughage. With projected scenarios of climate warming, plant protein concentrations will diminish in the future. If weight gain isn't to drop, ranchers are likely going to have to manage their herds differently or provide supplemental protein, Craine said.

Any future increases in precipitation would be unlikely to compensate for the declines in forage quality that accompany projected temperature increases. As a result, cattle are likely to experience greater nutritional stress in the future if these geographic patterns hold as a actual example of future climates, Craine said.

"The trickle-down to the average person is essentially thinking ahead of time of what the consequences are going to be for the climate change scenarios that we are looking at and how ranchers are going to change management practices," Craine said.

"In my opinion these are fully manageable changes," Olson said. "They are small, and being prepared just in case it does happen will allow us to adapt our management to what will essentially be a shorter window of high-quality grazing."

Additional investigators on the project include Andrew Elmore at the University of Maryland's Center for Environmental Science and Doug Tolleson from the School of Natural Resources at the University of Arizona, along with the assistance of Texas A&M's Grazingland Animal Nutrition Lab.

Joseph Craine | Joseph Craine
Further information:
http://www.k-state.edu

Further reports about: Craine K-State Nutrition Olson carbon dioxide specimen processing synthetic biology

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>